АВТОМАТИЗИРОВАННЫЙ КОНТРОЛЬ РЕЖИМА ГЕНЕРАЦИИ ЛАЗЕРНОГО ДИОДА, ВХОДЯЩЕГО В ЛАЗЕРНУЮ ИЗМЕРИТЕЛЬНУЮ СИСТЕМУ

АННОТАЦИЯ

Описана установка, обеспечивающая в автоматизированном режиме работы высокоточные измерения диаграммы направленности излучения лазерного диода в плоскости р-п-перехода.

ЛАЗЕРНЫЙ ДИОД, ДИАГРАММА НАПРАВЛЕННОСТИ, АВТОМАТИЗИРОВАННАЯ УСТАНОВКА

ВВЕДЕНИЕ

В настоящее время широко используются в различных лазерных измерительных системах полосковые лазерные диоды (далее - ЛД). При эксплуатации этих систем приходится проводить не только пуско-наладочные работы, но и регламентные и ремонтные работы. Эти работы лимитированы по времени. В то же время представляет интерес аккуратные измерения важнейшей характеристики излучения ЛД — диаграммы направленности в плоскости р-п перехода (далее - горизонтальной плоскости) и в плоскости перпендикулярной плоскости р-п перехода (далее - вертикальной плоскости). Такие измерения требуют автоматизации, так как связаны с получением большого массива чисел из-за сильной расходности излучения ЛД. Целью данной работы является модификация ранее созданной нашей научной группой автоматизированной системы измерений диаграмм направленности излучений с целью диагностики состояния гетероструктуры ЛД.

Принципиальная схема установки для автоматизированных измерений диаграмм направленности ЛД

Принципиальная схема установки для автоматизированных измерений диаграмм направленности ЛД приведена на рис. 1.

Описание основных узлов измерительной установки

Микроконтроллер. В качестве микроконтроллера в данной работе используется платформа марки Arduino типа Uno, которая выполнена на базе процессора ATmega328p с тактовой частотой 16 МГц и имеет 20 контролируемых контактов ввода и вывода для взаимодействия с внешним миром. Платформа состоит из аппаратной и программной частей; обе чрезвычайно гибки и просты в использовании. Для программирования используется упрощённая версия C++. Поддерживаются операционные системы Windows, MacOS X и Linux. Arduino Uno может питаться как от USB подключения, так и от внешнего источника: батарейки или обычной электрической сети. Источник определяется автоматически.

Шаговый двигатель. Шаговый двигатель – это синхронный бесколлекторный электродвигатель с несколькими обмотками, в котором ток подаваемый в одну из обмоток статора вызывает фиксацию ротора. Проведена последовательная активация обмоток двигателя, которая вызывает дискретные угловые перемещения (шаги) ротора. Использован шаговый двигатель марки 57HM76–3004 с шагом 0,9°. С целью качественного улучшения работы установки далее планируется использование двигателя с шагом 0,3 – 0,5°. При таком шаге двигателя обеспечивается достаточно большой массив данных для анализа диаграмм направленности и тем самым увеличивается точность измерений.

коллекторных двигателей постоянного тока, напряжением 5–24 В и максимальным током до 2 А на канал.

Плата Arduino соединена с компьютером, фотоприёмником, шаговым двигателем и универсальным блоком питания. При долговременной работе у платы был обнаружен перегрев. В связи с этим для исключения неисправностей работы платы, связанной с ее перегревом, она размещалась на кулер. Напряжение смещения, подаваемое на фотоприемник, и напряжение питания лазерного модуля были равны 5 В.

В результате работы были измерены диаграммы направленности двух типов ЛД. Одни из них были созданы на основе AlGaAs (длина волны генерации 0,65 мкм) – далее красные ЛД (рис. 2 и рис. 3). Другие, на базе ЛД с квантовыми ямами InGaAs (1,06 мкм) с последующим удвоением частоты генерации и получения излучения на длине волны 0,53 мкм – далее зеленые ЛД (рис. 4).

Рис. 2. Диаграммы направленности лазерных диодов с вертикальной осью распространиения длиной волны 650 нм: синий – красный лазерный диод №1, розовый – красный лазерный диод №2, зеленый – красный лазерный диод №4, голубой – красный лазерный диод №5

На рис.2 видно, что диаграммы направленности симметричны относительно оси пучка, что характерно для одномодовых ЛД. Некоторый разброс кривых по амплитуде связан, по-нашему мнению, с некоторой неопределенностью положения оси диаграммы ЛД относительно корпуса лазерного модуля.

Аналогичная картина наблюдается на рис. 3, что позволяет заключить, что эти ЛД одномодовые и в вертикальной и горизонтальной плоскости. Именно такие ЛД и являются в строгом смысле слова одномодовыми ЛД. Как показывают многочисленные спектральные измерения характеристик такого рода ЛД, в этом случае спектральная линия представляет собою достаточно узкую симметричную кривую с шириной 0,5 нм. Это крайне важно для использования таких лазеров в различных измерительных системах.
На рис. 4 видно, что в отличие от кривых, приведенных на рис. 2 и рис. 3, диаграммы направленности асимметричны, что однозначно указывает на нарушение одномодового режима генерации. Этот вывод подтверждается проведенными нами спектральными измерениями, когда ширина линии увеличивается до 2,5 нм и содержит несколько пиков.

Время, которое затрачивалось на измерение диаграммы направленности с помощью автоматизированной установки существенно сократилось. Если в ручном режиме требовалось несколько часов, то в случае использования установки время составляло всего 180-300 секунд.
ЗАКЛЮЧЕНИЕ

Данная установка позволяет производить измерения диаграмм направленности в автоматизированном режиме. Как отмечалось ранее, время, которое затрачивается на снятие одной диаграммы, существенно сократилось. Но существует проблема со снятием горизонтальной оси ЛД, в связи с этим будет производиться замена шагового двигателя, с целью уменьшения угла поворота, для снятия более большого массива данных.

СПИСОК ЛИТЕРАТУРЫ

 I.A.Korsakov, V.V.Bliznyuk, O.A.Semenova, H.Munkhtsetseg

Moscow Power Engineering Institute (technical university), Russia,
111250, Moscow, Krasnokazarmennaya st., 14, E-mail: snake_009@ mail.ru

AUTOMATED CONTROL OF THE LASER DIODE GENERATION MODE INCLUD IN
THE LASER MEASURING SYSTEM

ANNOTATION

A setup is described that provides, in an automated mode, high-precision measurements of the radiation diode emission direction in the p-n junction plane.

LASER DIODE, DIRECTIONAL DIAGRAM, AUTOMATED SYSTEM