

Одиннадцатая Международная научно-техническая конференция

«Оптические методы исследования потоков»

Москва, 27 — 30 июня 2011 г.

УДК 535.373

А.Е. Обухов

Московский энергетический институт (технический университет), Россия, 111250, Москва, Красноказарменная ул., 14, E-mail: aobukhov@fo.gpi.ru

ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ СПЕКТРОСКОПИИ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА И ЛЮМИНЕСЦЕНЦИИ ДЛЯ ИЗУЧЕНИЯ СТРОЕНИЯ И СВЕРХТОНКОГО ЭЛЕКТРОННО-ЯДЕРНОГО ВЗАИМОДЕЙСТВИЯ В РАЗНЫХ ТИПАХ КОМПЛЕКСАХ МОЛЕКУЛ

Рассматриваются физические основы комплексного применения люминесцентной и ЯМР спектроскопий (¹H и ¹³C) комплексов парамагнитных ионов лантанидов с органическими лигандами с целью установления: типа образующихся однотипных комплексов в кристаллах и растворах, стехиометрии, изомерного состава, симметрии и геометрических параметров комплексов (включая угловые факторы и расстояние формирующейся в комплексе донорно-акцепторной связи ион лантанида - донорный атом субстрата). Обсуждается методика экспериментального измерения и теоретического расчета парамагнитных индуцированных ионами лантанидов сдвигов резонансных частот для всех ядер в спектрах ЯМР лиганда, скоростей продольной и поперечной релаксаций ядерных спинов, дипольных и контактных вкладов в парамагнитный сдвиг сигналов резонирующих ядер. С использованием – геометрии органической молекулы, коэффициентов анизотропии магнитной восприимчивости и индуцированные дипольные лантанидные сдвиги в спектрах ЯМР по новым ЭВМ-программам рассчитаны геометрические комплекса ЛСР-лиганд. (оптимизированные) параметры также для для a координирующейся гетероциклической молекулы.

ПОГЛОЩЕНИЕ, ЛЮМИНЕСЦЕНЦИЯ, ВРЕМЯ ЖИЗНИ, ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС, АНИЗОТРОПИЯ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ, ПАРАМАГНЕТИЗМ, МОЛЕКУЛА

введение

Широко известно применение аддуктов парамагнитных ионов лантаноидов с гетероциклическими соединениями в практике науки и техники для целей нанотехнологий, люминесцирующих экранов и ИК-лазеров, фотобиологии и медицины (применяется метод допирования редкоземельными элементами (РЗЭ) << металлов жизни >> - кальция, магния для использования их спектральных свойств), в структурной ЯМР спектроскопии, в качестве приместных центров в активированных кристаллах и активных элементов в лазерах (например, для цветного телевидения получить на переходах между штарковскими подуровнями активированных кристаллов РЗЭ одновременно три перехода, с частотами соответствующим трем основным цветам - синему, зеленому и красному), а также в качестве люминесцентных активаторов в биополимерных средах и в новых OLED-диодах [1 - 8].

ПАРАМАГНИТНЫЕ ЗОНДЫ

Известно, что рефракционные и люминесцентные методы спектроскопии наиболее информативны для кристаллических образцов редкоземельных элементов (РЗЭ) и их аддуктов с различными типами лигандов [1 - 3]. Оценка пространственной структуры образующихся в растворах и кристаллах аддуктов парамагнитный сдвигающий реагентмолекула (иначе ПСР-субстрат), а также его трехмерная геометрия по данным спектроскопии ЯМР может быть сделана высокоинформативным методом, который получил в литературе название - метод лантанидных сдвигающих реагентов (ЛСР-субстрат) или "рентген растворов".

В качестве ЛСР чаще всего используется трис- и тетракис- β -дикетонаты РЗЭ (наиболее часто: 1,2,2,6,6-тетраметилгептан-3,5-диондипивалометан – (dpm), а также 6,6,7,7,8,8,8-гептафтор-2-2-диметил-3,5-октандион- (fod) для ионов: европия, празеодима, ербия, иттербия, лантана и т.д., которые меньше, чем металлы переходной группы - Са, Мg, Со, Ni, Мо уширяют сигналы ядер в комплексе. Это делает эксперимент по ЯМР более информативным [2, 4, 5].

Строение аддуктов ЛСР-субстрат по данным рентгенографии

Наиболее надежные данные о стереохимии координационных соединений РЗЭ получены рефракционными методами для кристаллов [2, 6]. В комплексах состава $Ln(dpm)_3(4$ -метилпиридин)₂, где $Ln = Eu^{3+}$, Pr^{3+} , основным структурным элементом являются три бидендантные группы β -дикетонов (рис. 1 (б)). В аддуктах состава - 1:1 для комплексов Ho(dpm)₃H₂O, Dy(dpm)₃H₂O, Eu(dpm)₃DMSO, и Lu(dpm)₃(3-метилпиридин), координационные числа ионов лантанидов равны семи (рис. 1 (а)), а координационные полиэдры представляют собой искаженные октаэдры (точечная группа симметрии C_{3V}) или тригональные призмы (C_{2V}).

Рис. 1. Структура кристаллов комплексов: **(a)** Lu(dpm)₃(3-метилпиридин) **(б)** Pr₂(dpm)₆ (одна из спиральных форм) [3]

Аддукты Eu(dpm)₃(пиридин)₂, а также Ho(dpm)₃(4-метилпиридин)₂ обладают осью симметрии 2-го порядка (рис. 1 (б)). Ось симметрии 3-го или более высокого порядка отсутствует. Пиридиновые лиганды в комплексах некоаксиальны, угол между двумя координационными связями > N-Eu³⁺-N< составляет 140,3 град и между связями > N-Ho³⁺- N< меньше - 139,1 град. Безводный трисдипивалоилметанат празеодима является димером – $Pr_2(dpm)_3$ (рис. 1 (б)). Координационное число каждого атома празеодима в кристаллическом

аддукте равно семи, а атомы празеодима связаны с двумя мостиковыми атомами кислорода и неравноценны между собой. Гидратированный продукт Pr₂(fod)₃H₂O - димер, координационное число иона Pr³⁺ равно восьми. В сравнении безводный аддукт Er(dpm)₃ - мономер, координационное число иона эрбия равно шести.

Общее понижение координационного числа с 9-10 до 7-8 для β - дикетонатов, связано с тем, что образуется плоские шестичленные металлоциклы, которые затрудняют заполнение первой координационной сферы. Примером служат аддукты кристаллогидратов этилсульфата лантаноидов состава Ln(C₂H₅SO₄)₃ 9H₂O, все основные особенности спектров которых определяются скорее точечной группой симметрии C_{3h} катиона в решетке или пространственной группой симметрии C_{6h}.

Важно отметить, что для некоторых аддуктов РЗИ ион Ln³⁺ лежит вне плоскости хелата. Это отклонение можно выразить двухгранным углом $\angle \alpha_i$ и расстоянием R_{Ln-N}. В аддукте Eu(dpm)₃+(пиридин)₂ отклонение характерно только только для пиридиновых циклов, что объясняется стерическим влиянием координированных молекул пиридина и координационной связью >N-Eu³⁺ составляет 8 град, что также видимо определяется взаимовлиянием поля лигандов циклов.

В комплексе $Er(dpm)_3$ парамагнитный ион Er^{3+} располагается в плоскости хелата, но в случае аддукта $Pr_2(dpm)_6$ ион Pr^{3+} выходит из плоскости хелата. Точечная группа симметрии иона определена параметрами кристаллического поля окружения (рис. 1 (б)).

Для кристаллического комплекса $Lu(dpm)_3+(3-метилпиридин)_2$ координационный полиэдр образован шестью атомами кислорода β - дикетонов лигандов и одним атомом азота субстрата, а искажение полиэдра вызвано тем, что расстояние > N–Lu³⁺ на 0,25 Å больше, чем в случае образования связи с атомом кислорода O-Lu³⁺. Данный вывод сделан на основании интерпретации спектров люминесценции европия (проанализирована тонкая структура и распределение интенсивностей в спектре) в предположении, что ближайшее окружение иона европия имеет симметрию D_{3h} с небольшими отклонениями до C_{3h} [6].

Поскольку первую координационную сферу кристаллов этилсульфатов лантаноидов составляют девять молекул воды, то их можно считать "кристаллическими акваионами".

Природа индуцируемого ионами лантаноидов парамагнитного сдвига резонансных частот ядер в спектрах ЯМР

При изучении растворов аддуктов РЗЭ методом ЯМР (в отличие от кристаллической фазы) напротив - появляется возможность наблюдения изменения сигналов резонансных частот каждого из ядер (лантанидные индуцированные сдвиги, ЛИС) в спектрах ЯМР ¹³Н и ¹³С органических многоатомных молекул, которые находятся в первой координационной сфере образующегося комплекса в растворе трехзарядного иона лантаноида. Комплекс ЛСР-субстрат может образоваться только в том случае, если образуется донорно-акцепторная связь между ЛСР и органическим лигандом, у которого в структуре имеются атом (или атомы) с неподеленной парой электронов (атомы – О-, N-, S- и т. п.). Информация о структуре лиганда в аддукте с ЛСР содержится в природе парамагнитного сдвига ядер, индуцируемого парамагнитным центром [1, 2].

Трехзарядные парамагнитные ионы лантанидов, содержащие атомы с неспаренными электронами в аддукте с азоциклическими молекулами, также имеющей неподеленную пару электронов, являются источниками сильных анизотропных полей в месте расположения ядра с полуцелым спином.

Диполь-дипольное взаимодействие

При изменении в растворе по отношению к органическому субстрату концентрации ЛСР резонансные частоты ядер координирующегося субстрата – молекулы, уширяются и изменяют свою резонансную частоту на величину, находящуюся в зависимости от положения ядра в структуре соединения. Основной вклад в суммарную величину лантанидных индуцированных сдвигов (ЛИС) ядер вносит диполь-дипольное взаимодействие (ДДВ), несущее информацию о пространственном относительном расположении ядер в аддукте ЛСР-субстрат в растворе по сравнению с кристаллами [1, 2].

Данный механизм пространственного ДДВ взаимодействия частиц задается выражением МакКоннела-Робертсона [8]:

$$F_{i}(\theta_{i},\varphi_{i}) = \langle D_{1}^{ax} \cdot (3\cos^{2}\Omega_{i}-1)]/r_{i}^{3} \rangle + \langle D_{2}^{nonax} \cdot Sin^{2}\Omega_{i} \cdot Cos2\alpha_{i}/r_{i}^{3} \rangle, \qquad (1)$$

где D_1^{ax} и D_2^{nonax} - коэффициенты анизотропии магнитной восприимчивости, которые могут быть определены из следующих выражений:

$$D_1^{dx} = [g_e \beta_e S(S+1)/45KT](3g_{\uparrow\uparrow} + 4g_{\downarrow})(g_{\uparrow\uparrow} - g_{\downarrow}), \qquad (2)$$

$$D_2^{nax} = -1/2(\chi_x - \chi_y),$$
(3)

где g_e - g фактор электрона, β_e - магнетон Бора, g_{\perp} и g_{II} - перпендикулярная и параллельная составляющие g-фактора Ланде, S - суммарный спин комплекса, K - константа Больцмана, T - абсолютная температура, χ_x, χ_y - магнитная восприимчивость комплекса вдоль осей ОХ и ОУ, Ω_i , α_i r_i - сферические координаты ядра и r_i - расстояние между парамагнитным центром и ядром, резонанс которого наблюдается (рис. 2 (а)).

Рис. 2. (а) Пространственная модель комплекса ЛСР-субстрат: 2,6-диметил-пиридин+Ln³⁺, использованная при расчетах дипольных парамагнитных сдвигов в ЛИС ядер; (б) Экспериментальное положение ЛИС, для одного из ядер 4-фенилпиридина в растворе CCl₄ в спектре ЯМР

При использовании модели МакКоннела-Робертсона варьируемыми (независимыми) параметрами при статистических оценках являются пять переменных $-D_1^{ax}$, D_2^{nonax} , Ω_i , α_i и r_i . Если комплекс изотропен, тогда $g_{\perp} = g_{II}$ и парамагнитный сдвиг равен нулю.

Таким образом, парамагнитный сдвиг резонансных частот определяется анизотропией магнитной восприимчивости в месте расположения ядра в структуре молекулы в аддукте с ЛСР, возникающей в поле лигандов, симметрия которого ниже кубической.

Выражение для изменения частоты сдвига $\Delta v_i / v_0 = H_1/H_0$ можно выразить через термины магнитной восприимчивости комплекса ЛСР-субстрат [2]:

$$\left(\Delta v_i / v_0\right) = \left(1/2Nr_i^3\right) \left[(\chi_z - \overline{\chi}_y)(3\cos^2\Omega_i - 1) + (\chi_x - \chi_y)(\sin^2\Omega_i \cos^2\alpha_i) \right], \quad (4)$$

где $\overline{\chi} = 1/3(\chi_x + \chi_y + \chi_z)$ - усредненная величина по трем направлениям магнитной

восприимчивости аддукта, N - число Авогадро, χ_x, χ_y, χ_z - главные значения тензора магнитной восприимчивости, Ω_i - угол между радиус-вектором \vec{r}_i , направленным от парамагнитного центра к исследуемому ядру и главной магнитной осью Z, α_i - угол, который составляет с осью Y (главная магнитная ось, рис. 2 (a)) проекция вектора \vec{r}_i на плоскость XY.

Сдвиг резонансной частоты ядра определяется из выражения:

$$\Delta v_i / v_0 = \left[\beta_e^2 S / (S+1) / 6kT \right] \cdot R_i^{-3} F_1(\theta_i, \varphi_i),$$
(5)

где функция в точке с полярными координатами Ω_i , α_i и r_i наведенным диполем:

$$F_{i}(\theta_{i},\varphi_{i}) = (g_{z}^{2} - g^{2})(3\cos^{2}\Omega_{i} - 1) + (g_{x}^{2} - g_{y}^{2})Sin^{2}\Omega_{i}Cos2\alpha_{i} = = \left\langle D_{1}^{ax} \left(3\cos^{2}\Omega_{i} - 1 \right) / r_{i}^{3} \right\rangle + \left\langle D_{2}^{nax} \left(3Sin^{2}\Omega_{i}Cos2\alpha_{i} \right) / r_{i}^{3} \right\rangle$$
(6)

где $g = (g_x^2 + g_y^2 + g_z^2)/3$.

В случае аксиальной симметрии аддукта ЛСР-субстрат $g_Z = g_{II}$ и $g_X = g_Y = g_I$ и в этом случае изменение резонансной частоты ядра в спектре ЯМР может быть определено из уравнения:

$$(\Delta v_i / v_0) = \left[\beta_e^2 S(S+1) / 6KT\right] \eta^{-3} (2/3) \left(g_{II}^2 - g_{\perp}^2\right) \left[3Cos^2 \Omega_i - 1\right],\tag{7}$$

Из формул (6) следует, что величина индуцированного парамагнитного сдвига сигнала ядра в спектрах ЯМР, содержащаяся в дипольной составляющей, обратно пропорциональна кубу расстояния r_i^{-3} и по разному зависит от сферических (угловых) координат резонирующего ядра. Сдвиг не наблюдается, когда магнитный момент изотропен.

Ферми-контактное взаимодействие

Вследствие образования координационной связи ион-донорный атом субстрата в аддукте велика вероятность нахождения неспаренного электрона в месте расположения ядра в молекуле и поэтому, возникает принципиально отличный от дипольного механизм, также влияющий на резонансные частоты ядер - контактное Ферми взаимодействие [1 - 3].

Величина изменения эффективного магнитного поля, изменяющегося на резонирующем ядре из-за взаимодействия с неспаренными электронами, определяется выражением Бломбергена-МакКоннела и формулой Ферми [1 - 3]:

$$\Delta H_i / H_0 = \langle A_Z \rangle 4 / 3\pi \beta g_N \beta_N \langle \rho_N \rangle = \left[\langle \alpha | \hat{S}_Z | \alpha \rangle / g_N \beta_N \right] [\psi_i^2 \Sigma_i 2S_{zi} \delta_i(N) \psi_i d\psi, \quad (8)$$

где $\langle \alpha | \hat{S}_Z | \alpha \rangle$ - матричный элемент компоненты спина \hat{S}_z в состоянии $| \alpha \rangle$, g_N- значение gфактора данного ядра, β_N - ядерный магнетон Бора, A_i - константа сверхтонкого взаимодействия, ρ_N - объемная электронная плотность не спаренного электронного спина на ядре, ψ_i - волновая функция состояния электронной плотности на резонирующем ядре молекулы в спектре ЯМР.

Выявление механизма передачи сверхтонкого взаимодействия (СТВ) по атомам координирующегося субстрата имеет важнейшее значение для фотобиологии и для оценок электронной структуры органических молекул и позволяет привлекать другие методы - например, квантовохимические методы ЛКАО-МО ССП КВ [4].

Зная значения параметров *J*, λ - для ряда редкоземельных элементов рассчитаны значения контактных сдвигов для различных аддуктов лантаноидов [1].

ПРАКТИЧЕСКИЕ РЕЗУЛЬТАТЫ КОМПЛЕКСНОГО ПРИМЕНЕНИЯ СПЕКТРАЛЬНОГО ЯМР-ЛЮМИНЕСЦЕНТНОГО МЕТОДА

Рассматриваются физические основы моделирования строения и фотофизических свойств комплексов парамагнитных сдвигающих реагентов - группы редкоземельных элементов (РЗЭ) в растворах, по данным люминесцентной спектроскопии ионов и спектроскопии ядерного магнитного резонанса (ЯМР). В рядах специально синтезированных соединений на основе пиридина, фурана и тиофена и их метил-, фенил- и диметилпроизводных, для каждого из ядер субстрата впервые выделены контактный и дипольный вклады в парамагнитный индуцированный сдвиг (ЛИС) резонансных частот сигналов резонансных частот ¹Н и ¹³С в спектрах ЯМР. По полученным наборам дипольных ДЛИС и предельных сдвигов ЛИС подтверждено пространственное строение новых соединений и рассчитана геометрия аддуктов ЛСР-субстрат в растворах. [1 - 3].

Рис. 3. (а) Фрагменты спектров люминесценции растворов аддуктов: (1 а и б) - Eu(dmp)₃+пиридин, (**2 а и** б) - Eu(dmp)₃+2-метилпиридин и (3 а и б) - Eu(fod)₃+пиридин (при **а** – 298К и (б) - 77К); (б) Эволюция спектра ПМР п-нитро-фенил-производного 1-азафлуорена при изменении концентрации [ЛСР]/[субстрат] = [n] = 0,01 - 0,44

На рисунке 3 (б) приведен пример из которого видно, что при изменении относительных концентрации [ЛСР]/[субстрат] = [n] сложный спектр протонного магнитного резонанса упрощается и может быть интерпретирован по правилам первого порядка [2, 3].

Установлено, что для достоверных оценок пространственной структуры аддукта ЛСРсубстрат и величины изменения степени ковалентности связи ион - донорный атом субстрата в растворе по сравнению с кристаллами по данным ЯМР требуется использовать значения коэффициентов магнитной восприимчивости парамагнитного комплекса полученных из спектров люминесценции, например для трехзарядного иона европия рассчитанных из структуры магнитно-дипольного перехода ${}^{5}D_{1}$ -> ${}^{7}F_{2}$ [5]. В случае аксиально симмеричных аддуктов ЛСР-субстрат пространственная структура аддукта с ЛСР может быть достоверно оценена по данным ЯМР с применением дипольных ЛИС и формулы МакКоннела-Робертсона только для случая образования в растворе, по сравнению с кристаллическим состоянием, комплексов состава 1:1. Наличие в серии лантаноидов диамагнитных ионов (лантан, лютеций) позволило учесть возможное изменение геометрии лигандов при образовании аддуктов (диамагнитный сдвиг). Использованные ионы Eu³⁺, Pr³⁺, Yb³⁺ вызывают большие сдвиги резонансных частот сигналов ядер в спектре ЯМР в разном направлении и с разной скоростью уширяют линии [4]. Это позволило с использованием методики двойного резонанса найдены среди большого числа сигналов связанные спин-спиновым взаимодействием ядра в структуре и измерить вицинальные и геминальные константы спин-спинового взаимодействия (КССВ) молекулы.

Строение *β*-дикетонатов европия по спектрам люминесценции

Исследования спектров люминесценции поликристаллических образцов аддуктов Eu(fod)₃ показало, что в растворе, как и в кристаллическом состоянии, имеется не менее двух неэквивалентных центров люминесценции (рис. 3 (а)). При температуре 298 К для аддуктов ЛСР-пиридиновые системы значение квантовых выходов люминесценции составляет γ_{fl} =

0,01 - 0,36 и мало изменяется от природы субстрата, но сильно увеличивается при 77 К.

Присоединение субстратов (производные пиридина), уменьшает степень неэквивалентности разных центров люминесценции аддуктов Eu(fod)₃ и во всех случаях аддукт Eu(fod)₃+(пиридин) не имеет аксиальной симметрии. Исследования спектров люминесценции поликристаллических образцов аддуктов Eu(fod)₃ показало, что в растворе, как и в кристаллическом состоянии, имеется не менее двух неэквивалентных центров люминесценции. Присоединение субстратов - производных пиридина, уменьшает степень неэквивалентности разных центров люминесценции аддуктов Eu(fod)₃ и во всех случаях аддукт Eu(fod)₃ (пиридин) не имеет аксиальной симметрии [5, 6].

Из рассмотрения спектров люминесценции кристаллических аддуктов Eu(dpm)₃ и приместного иона европия в $Pr(dpm)_3$ и Yb(dpm)₃ следует, что в твердом состоянии имеется два типа P3И – для иона Eu³⁺: как остовные, так же как и для аддукта Yb(dpm)₃, так и входящие в состав димеров, как для аддукта $Pr_2(dpm)_6$. В растворе аддукта Eu(dpm)₃ в CCl₄ содержатся только остовные комплексы, но для растворов аддукта $Pr(dpm)_3$ димерные структуры сохраняются [5]. При изучении кинетики распада заселенности с возбужденного уровня европия 5D_0 в аддуктах Eu(fod)₃+(пиридин) и Eu(dpm)₃+(пиридин) не выявлено отклонение от экспоненциального закона, являющегося свидетельством наличия передачи возбуждения. Таким образом, наблюдаемые изменения оптических спектров связаны с изменением (усреднением) симметрии окружения иона европия при возникновении условий свободного обмена лигандами.

По числу штарковских компонент в спектре люминесценции аддукта европия в переходе ${}^{5}D_{0}$ -> ${}^{7}F_{1}$, устанавливается тенденция сохранения оси симметрии выше второго порядка, либо малое отклонение от аксиальной симметрии при переходе от кристаллического состояния (плотная упаковка) к раствору при комнатной либо низких температурах.

Установлено, что если ось симметрии аддукта близка к C_{2V} , то в переходе ${}^{5}D_{0}$ -> ${}^{7}F_{1}$ наблюдаются только две штарковские компоненты [5, 6]. Если аксиальная симметрия аддукта возникает по причине свободного вращения субстрата в координационной сфере иона европия с лигандами вокруг оси ион-донорный атом субстрата, то две более низкочастотные дублетные компоненты при T = 293 К сольются [6].

Аксиальная симметрия магнитного поля, действующего на координирующуюся молекулу, может возникнуть при комнатной температуре из-за равновероятного заселения ротамерных форм относительно ионной связи ион-донорный атом субстрата, даже в том случае, если аксиальная симметрия окружения иона европия с лигандами (например –(dpm)₃) отсутствует. Это важно, т. к. измерения по методу ЯМР ведутся при комнатных температурах и в отличных от методов оптики временных характеристиках [3].

Характеристическое время регистрации обменных процессов для метода ЯМР лежит в

диапазоне $v = 10^{-7} - 10^{-5}$ с, а в оптических методах - $10^{-8} - 10^{-11}$ с. Поэтому предполагается, что если условие быстрого заселения ротамеров субстрата в аддукте с ЛСР зарегистрировано по спектрам люминесценции европия, то это сраведливо и для условий измерения по методу ЯМР. Если это условие выполняется, т. е. свободной вращение субстрата вокруг оси иондонорный атом обеспечивает аксиальную магнитную анизотропию поля, действующего на молекулу в аддукте, то не увеличивается симметрия окружения парамагнитного иона [5].

С целью снижения вклада однородного уширения в штарковские компоненты подуровней ионов лантаноидов в спектрах люминесценции измерения проведены при температуре жидкого азота (77 К) (Табл. 1).

Ма		Eu(dı	om) ₃		Eu(fod) ₃				
	296К		77K		Тип	296K		77K	
Соед.	D_1	D ₂	D ₁	D ₂	аддукта	D ₁	D ₂	D ₁	D ₂
(∩) 1	1330	0	1440	1100	2:1 1:1	1060	600	1000 1150	1900 420
С _N сн ₃ 2	1300	-980	1110	-1200		1100	920	1000	1270
CH ₃ 3	1380	0	1350	1030	2:1 1:1	830	540	1000 1050	1700 560
$\int_{N}^{CH_3} 4$	1400	-1250	1430	-1030	2:1 1:1	-1050	930	1070	540
сн ₃ Сл _у сн ₃ 5	1390	1000	1440	-1280		-1320	1190	1220	1120
^{сн} ₃ Сн ₃						940	720	1430 800	
^{сн} ₃ сн ₃ 7	(2:1) 1330 (1:1)	0	1710 1220	1180 850	2:1 1:1	1340	1220		

Таблица 1. Значения коэффициентов анизотропии магнитной восприимчивости

<u>Примечание</u>: при соответствующих условиях коэффициенты D_1 и D_2 пропорциональны параметрам кристаллического поля (ПКП) второго порядка: $D_1 = C \times B_2^0$ и $D_2 = C \times B_2^2$. Для иона европия при 298 К коэффициент C = 3 м.д. $\times A/cm^{-1}$. ПКП B_2^0 и B_2^2 определены по оптическим спектрам европия: $B_2^2 = -2,5 \times [E(B_1) + E(B_2)]$, $B_2^2 = -2,5 \times [E(B_1) + E(B_2)]$, где $E(B_1)$, $E(B_2)$ - штарковские смещения подуровней компоненты 7F_1 уровня, волновые функции которых преобразуются подобно представлениям B_1 и B_2 группы симметрии C_{2V} .

Для данных, приведенных в таблице 1 видно, что если аксиальная симметрия комплекса имеется, то коэффициент $D_2 = 0$, но при этом значения коэффициентов D_1 и D_2 различны для 77К и 293К. Отметим, что величины коэффициента D_2 могут быть как положительные, так и отрицательные, но для коэффициента D_1 только положительные (знаки противоположны).

Из спектров люминесценции европия видно, что при изменении температуры от 298 к 77 К изменяется число, частота и интенсивность магнитно- и электродипольных переходов (рис. 3 (a)). В спектре аддукта Eu(fod)₃ с пиридином при 77 К наблюдается пять компонент в ${}^{5}D_{0}$ -> ${}^{7}F_{1}$ переходе, что говорит о наличии в растворе более одного типа аддуктов (рис. 1 (a) – 1 б). При 298 К в переходе ${}^{5}D_{0}$ -> ${}^{7}F_{1}$ аддукта Eu(fod)₃+(пиридин) наблюдается не пять, а три

уширенные компоненты, т. е. аксиальная симметрия отсутствует.

Спектры люминесценции европия свидетельствуют о наличии в растворе одного типа аддуктов Eu(dpm)₃ (в ⁵D₀->⁷F₁ переходе при 77 К наблюдаются три линии). При переходе от 77 к 298 К спектры люминесценции сильно изменяются: резко возрастает интенсивность линий ⁵D₀->⁷F₀ и ⁵D₀->⁷F₂ переходов. Наблюдается сужение линий интенсивностью линий ⁵D₀->⁷F₁ перехода, а также заметно перераспределение интенсивностей при переходах на штарковские компоненты всех уровней.

В спектрах люминесценции аддуктов $Eu(fod)_3$ с пиридиновыми соединениями, у которых нет рядом с местом координации иона европия объемных группировок – метильных, этильных, фенильных, при 77К в переходе ${}^5D_0-{}^{>7}F_1$ наблюдается более трех компонент. В переходе ${}^5D_0-{}^{>7}F_{2,3}$ число компонент превышает три, но при этом в более низкочастотных компонентах мультиплетов видны не менее четырех уширенных сигнала. Поэтому в растворе CCl_4 $Eu(fod)_3$ +субстрат образуется несколько неэквивалентных центров люминесценции и для аддукта отсутствует аксиальная симметрия, отличающаяся симметрией окружения иона лантанида.

Число типов аддуктов Eu(dpm)₃ зависит от структуры координирующегося соединения. Например, т. к. каждая интенсивная компонента мультиплетов в спектре люминесценции проявляется как дублет (подрасщеплена), но распределение интенсивности штарковских компонент в переходе ${}^{5}D_{0}$ -> ${}^{7}F_{1}$ при изменении структуры соединения изменяется мало, то видно, что образуется при 77К аддукт Eu(dpm)₃+пиридин в CCl₄ одного типа, а в случае растворов Eu(dpm)₃ с субстратами β - и γ - алкилзамещенными пиридинами, а так же 4фенилпиридин, 3-фенилпиридин (рис. 3 1-а) и 1-б)) образуются не менее двух неэквивалентных центров люминесценции (несколько типов комплексов).

Рассмотренные аддукты в растворе даже при 393К не имеют аксиальной симметрии по причине особенностей строения субстрата – в переходе ⁵D₀->⁷F₁ видны три четкие компоненты для преобладающего центра люминесценции.

Таким образом, в растворе при отсутствии свободного обмена лигандами для аддуктов Eu(dpm)₃ с разными субстратами образуются несколько близких типов центров люминесценции, в то время как для аддуктов Eu(fod)₃ всегда существует несколько различных центров люминесценции.

Сравнивая спектры люминесценции аддуктов Eu(fod)₃ и Eu(dpm)₃ с одинаковыми субстратами (рис. 3) показало, что субстрат при координации в растворе способен формировать разные комплексы состава 1:1 и 1:2, но без субстрата преимущественно 1:1.

При температуре 293К спектр люминесценции аддуктов Eu(dpm)₃ и Eu(fod)₃ сильно изменяется. Наблюдается перераспределение интенсивностей компонент в переходах и изменение их числа. Для α - метил замещенных соединений (\mathbb{N} 2, 5 и 6), т. е. при наличии пространственных затруднений при координации в переходе ${}^{5}D_{0}$ ->⁷F₁ число компонент остается неизменным и равно трем сильно уширенным сигналам (рис. 3). Интенсивность центральной компоненты выше, чем крайних как при 77К, так и при 293К.

Если у субстрата отсутствует α -объемный заместитель, то при 293К в переходе ${}^{5}D_{0}$ -> ${}^{7}F_{1,2}$ наблюдаются две уширенные компоненты. Отметим, что две низкочастотные компоненты в ${}^{5}D_{0}$ -> ${}^{7}F_{1,2}$ переходах сливаются в один широкий и более интенсивный сигнал, чем крайний.

Для аддукта Eu(fod)₃ даже с пиридином при 293К (в условиях свободного обмена) в переходе ${}^{5}D_{0}-{}^{7}F_{1}$ видны три широких компоненты и, следовательно, аксиальная симметрия отсутствует. Видимо лиганды (fod)₃ образуют менее прочно связанный с ионом Eu³⁺ комплекс, чем субстрат и, поэтому, свободное вращение невозможно. Для аддуктов Eu(dpm)₃ связь иона европия и лигандов более прочная и энергетический барьер ротамерных форм меньше. Поэтому свободное вращение субстрата в аддукте возможно.

Выделение контактной составляющей ЛИС ядер в спектрах ЯМР

Для выделения контактной составляющей (КЛИС) в полный парамагнитный сдвиг (ЛИС) ядер каждого субстрата использовался весь ряд лантанидов с одним типом лиганда – (dpm)₃ или (fod)₃. В этом случае ЛИС любого ядра ложится на прямую линию (puc. 2 (б)). Показано, что ЛИС соединений для всего ряда ионов лантанидов по сравнению с использованием нескольких из них – Eu³⁺, Pr³⁺, Yb³⁺ отличаются менее чем на 3%.

В таблицах 2 и 3 приведены экспериментально полученные из спектров ЯМР аддуктов ЛСР-субстрат величины ЛИС атомов углерода (¹³С) и водорода (¹Н).

Наибольшие ЛИС протонов наблюдаются для растворов аддуктов пиридиновых и азафлуореновых систем с $Er(dpm)_3$ и несколько меньше для растворов $Yb(dpm)_3$, но наименьшие ЛИС для $Eu(dpm)_3$. Отметим, что в эксперименте с $Er(dpm)_3$ для α -протонов или атомов углерода уже при [n] = 0,3 уширение настолько большое, что сигнал в спектре даже трудно идентифицировать, хотя значение измеренного сдвига в слабое поле для α -ядер в 3,5 раза больше, чем для $Yb(dpm)_3$. Сравнение соотношение для ЛИС для $Yb(dpm)_3$ и $Eu(dpm)_3$ составляет 3:1, но уширение в для $Eu(dpm)_3$ заметно меньше, что позволяет проводить эксперименты при очень большом [n] и существенно повысить достоверность измерения ЛИС.

Таблица 2. ЛИС резонирующих ядер в спектрах	ЯМР ¹ Н измеренные в	растворе CDCL ₃ для
аддуктов Ln(dpm) ₃ и Ln(fod) ₃		

No	ЛСР	H-2	H-3	H-4	H-5	H-6	2-CH ₃	3-CH ₃	4-CH ₄
\Box	Eu(dpm) ₃	24,69	8,35	7,85	8,35	24,7			
1	Er(dpm) ₃	92,82	31,2	27	31,2	92,8			
	Yb(dpm) ₃	82,37	30,2	25,4	30,2	82,4			
	Eu(dpm) ₃		8,09	5,9	5,28	16,5	17,8		
	Er(dpm) ₃		22,7	15,4	14,5	36,4	39,4		
2	Yb(dpm) ₃								
CH ₃	Eu(dpm) ₃	30,87		8,56	8,84	25		5,21	
^N N ²	Er(dpm) ₃	35,44		10,8	12,6	35,9		7,38	
3	Yb(dpm) ₃	75,86		23,9	28,7	76		16,5	
СН3	Eu(dpm) ₃	26,15	9,1		9,1	26,2			6,98
^ر N	Er(dpm) ₃	86,9	29,3		29,3	86,9			17,8
4	Pr(dpm) ₃	38,36	13,2		13,2	38,4			8,69
	Yb(dpm) ₃	76,69	28,6		28,6	76,7			16
	$Eu(fod)_3$	27,12	8,56		8,56	27,1			8,07
	Yb(fod) ₃	47,67	16,2		16,2	47,7			8,75

Нахождение в структуре субстрата α -метильной группы (соединение № 2) приводит к тому, что сравнительные значения ЛИС других ядер заметно уменьшаются, а для γ и β - положений ядер меньше, чем для α . Наибольшие ЛИС в аддукте наблюдаются при использовании ЛСР - Yb(dpm)₃ и Yb(fod)₃, а также для Pr(fod)₃, но аддукты Pr(dpm)₃ дают отрицательные ЛИС в сильные поля.

Отметим, что в аксиально симметричном аддукте ЛСР-субстрат наблюдается эквивалентность атомов в спектре ЯМР либо эффект близкий к этому. Для неаксиально симметричных аддуктов значения ЛИС сильно различаются. Наблюдаются отрицательные значения ЛИС атомов углерода даже при использовании Eu(dpm)₃, вследствие влияния одного из геометрических факторов – угла θ.

Молекула 2,4,6-триметилпиридин не образует комплекса с ЛСР Eu(dpm)₃ и с Eu(fod)₃, но образует аддукт с Yb(dpm)₃ [5]. Также молекула 2-фенилпиридин не образует аддукта ни с одним из ЛСР, что делает геометрический фактор и экранирование места координации –

атом азота (по данным метода ППП/S на атоме азота также наибольший отрицательный заряд q = -0,230 – основность не меняется) в данном случае основным фактором [2, 5].

Наибольший отрицательный заряд локализован на атоме азота q = -0,233, а на атоме α - углерода C₍₂₎ заряд составляет q = -0,018 [4]. Поэтому в условиях комплексообразования азолов с ионом лантанида наблюдается частичная делокализация неспаренной электронной плотности на соседние ядра углерода. Это и проявляется в максимальной величине для α ядер и её последовательное изменение по другим ядрам в структуре субстрата.

puerbope es es an uddy rios en (upin);										
N⁰	ЛСР	H-2	H-3	H-4	H-5	H-6	2-CH ₃	3-CH ₃	$4-CH_4$	
	Eu(dpm) ₃	21,4	7,93	6,35	7,93	21,4				
1	Yb(dpm) ₃	81,7	30,1	24,1	30,1	81,7				
С _N _{сн3}	Eu(dpm) ₃ Yb(dpm) ₃		6,6 25,1	3,62 15	3,7 14,1	9,05 35	9,7 36,9			
Сн ₃ 3	Eu(dpm) ₃ Yb(dpm) ₃	16,3 64,3		6,1 23,2	7,45 28,3	19,6 74,3		4,28 16,3		
	Eu(dpm) ₃ Yb(dpm) ₃	19.3 74,2	7,45 28,3		7,45 28,3	19,3 74,2			4,05 15,4	

Таблица 3. Дипольные ЛИС сдвиги резонирующих ядер в спектрах ЯМР ¹Н соединений в растворе CDCL₃ для аддуктов Ln(dpm)₃

Сравнение данных таблиц 1 и 3 позволяет сделать вывод, что при образовании аддукта в любой молекуле должно происходить изменение её геометрии по сравнению со свободным основанием. Выделение контактной составляющей КЛИС в ЛИС показало, что для α -замещенных пиридинов контактный вклад составляет до (45-50)% и для ядер углерода до (80-85)% от измеряемой величины ЛИС [4, 5]. Величины контактных вкладов КЛИС знакопеременны, т. е. для β -положений ядер могут быть меньше, чем для α - и γ - положений ядер по причине различия зарядов для свободного состояния (табл. 2 и 3). Последующие эксперименты с применением ЯМР ¹³С показали, что величина $\delta_{конт}$ составляющей в ЛИС может быть большой – от 15 до 35 или 45 % [3, 5]. Отсюда следует, что ошибки в геометрической структуре ЛСР-субстрат так же могут большими.

Оптимизация геометрических параметров аддукта ЛСР-субстрат в растворе

Составленная специально для данной методики программа использует не только итерационный метод (скорость счета – доли мкс), но и контурные карты среднеквадратичного отклонения, которые, например, для иона лантанида по задаваемой геометрии (топологии пространства) соединения, позволяют обнаружить несколько разных по глубине областей минимизируемой функции в окрестности координационного центра (атома азота субстрата): $\Delta S_R = (k_{x,y,z}, k_{Ln}, \delta_i^{3\kappa cn})$, где $k_{x,y,z}$ - координаты ядер, k_{Ln} - координаты иона лантанида, $\delta_i^{3\kappa cn}$ - ЛИС ядер субстрата (рис. 5).

В расчетах использовались относительные величины ЛИС $\omega_{ij}^{exp} = \Delta \omega_i / \Delta \omega_j$, когда один из протонов (*j*) выбирали в качестве "стандартного". Изменением координат лантанидного иона в заданных пределах и на заданной координатной сетке выбирали его оптимальное положение, соответствующее сумме квадратов невязок теория-эксперимент - $\left\{ \left[\sum_{i \neq j} (\omega_{ij}^{exp} - \omega_{ij}^{calc})^2 \right] \right\}$. При расчетах проведена минимизация методом наименьших квадратов по всем трем координатам парамагнитного иона и не помещать его в место по данным рентгеноструктурного анализа [5].

Из данных таблицы 4 видно, что если аддукт ЛСР-субстрат имеет аксиальную симметрию, то достигается хорошее согласие теория-эксперимент – $R_{HAM} = 0,004 - 0,040$ и при этом координация субстрата происходит по направлению оси ион-атом азота субстрата, практически совпадающей с биссектрисой внутреннего угла: >C-N=C<. Для аксиальносимметричных аддуктов ион лантаноида расположен по биссектрисе внутреннего угла связей пиридина: =C₍₂₎-N-C₍₆₎=, т. е. отклонение мало – $\Phi^0 = (0,7 - 2,1)$ и практически не выходит из плоскости пиридинового кольца, т. е. координационная связь ион-донорный атом субстрата совпадает с главной магнитной осью аддукта (рис. 5 (а)).

Tuethigu						
№ Соед.	ЛСР	ЛИС	d _{Ln-N} , A	Φ^0	$\Delta \Phi^0$	R _{HAM}
1	Eu(dpm) ₃	ЛИС	3,21	123,1	1,2	0,027
		ДЛИС	2,87	122,6	0,7	0,004
	Pr(dpm) ₃	ЛИС	4,45	122,6	0,7	0,003
		ЛИС	3,42	122,8	0,8	0,018
	Er(dpm) ₃	ЛИС	2,86	124	2,1	0,006
	Yb(dpm) ₃	ДИП	4,49	122,6	0,7	0,012
$\widehat{\Omega}_{N}_{CH_3}$ 2	Eu(dpm) ₃	ЛИС	4,17	98,3	-23,6	0,086
5		ДЛИС	2,48	157,8	35,9	0,098
	Yb(dpm) ₃	ЛИС	2,53	161,3	39,1	0,161
$3 \qquad \bigcap^{CH_3}$	Eu(dpm) ₃	ЛИС	4,08	108,8	-13,1	0,040
* N-		ДЛИС	4,93	128,2	6,3	0,037
	Pr(dpm) ₃	ЛИС	4,21	117,9	-4	0,031
	Yb(dpm) ₃	ЛИС	4,56	117,9	-2,3	0,036
^{CH₃} 4	Eu(dpm) ₃	ЛИС	4,56	122,2	0,7	0,041
لر _N با		ДЛИС	2,63	126,1	4,2	0,007
	$Eu(fod)_3$	ЛИС	4,45	122,6	0,7	0,005
		ДЛИС	4,0	122,5	0,6	0,074
		ЛИС	3,56	122,8	0,9	0,012
	^{13}C	ДЛИС	1,44	147,8	25,9	0,348
	^{13}C	ЛИС	4,93	121,6	0,3	0,093
	Pr(dpm) ₃	ЛИС	3,79	122,8	0,9	0,021
	Yb(dpm) ₃	ЛИС	2,78	122,6	0,7	0,004
		ДЛИС	4,5	123,8	1,9	0,005
	Yb(fod) ₃	ЛИС	3,56	122,8	0,9	0,017
		ДЛИС	3,42	122,8	0,9	0,013
	¹³ C	ЛИС	2,28	121,8	-0,1	0,032
	¹³ C	ДЛИС	3,32	121,9	0,0	0,035
<u>сн</u> , 5	Eu(dpm) ₃	ЛИС	4,18	99,6	-22,3	0,092
^K N ^J CH ₃		ДЛИС	2,53	108,7	-13,2	0,135
	Yb(dpm) ₃	ЛИС	2,54	161,3	39,2	0,166
CH ₃	Eu(dpm) ₃	ЛИС	3,0	89,1	-32,9	0,123
[~] N~СН ₃		ДЛИС	4,36	148	26,1	0,194
6	Eu(fod) ₃		3,46	95,8	-26,9	0,137
			3,06	113,1	-8,8	0,138
	$Pr(fod)_3$		2,8	80,7	-41,2	0,112
	Yb(fod ₃		2,91	85	-36,9	0,141
	¹³ C		3,16	113,5	-8,4	0,120
	Yb(dpm) ₃		3,14	95,5	-26,4	0,178

Таблица 4. Геометрические параметры комплексов ЛСР-субстрат

Расчеты показали, что в аддукте Yb(dpm)₃ (ДЛИС) минимум с $d_{Ln-N} = 4,45$ Å пропадает, который также пропадает при увеличении числа измеренных ЛИС – например, в случае аддуктов с 4-фенилпиридином. В случае применения аддукта Yb(dpm)₃ КЛИС наименьшие и, следовательно, геометрия аддукта ЛСР-субстрат наиболее достоверная.

При использовании набора ДЛИС при использовании Eu(dpm)₃ геометрические параметры аддуктов близки к таковым для набора ЛИС аддукта с ЛСР Yb(dpm)₃ (рис. 5)

Получен разброс значений среднестатистических величин расстояния ион-донорный атом - $d_{Ln-N} = (2,78 - 4,56)$ Å. Видно, что в растворах величины в d_{Ln-N} не менее чем на 0,35 Å больше, чем для кристаллического состояния (плотная упаковка). Таким образом, степень ковалентности координационной связи ион-донорный атом субстрата меньше и следовательно субстраты слабее вязаны с ионом РЗИ. В общем случае координаций субстрата в той или иной мере влияет на расстояние между ионом РЗЭ и атомами кислорода лигандов – (dpm)₃ либо (fod)₃. Лиганды (fod)₃ более прочно связываются с ионом РЗЭ и поэтому всегда образуют несколько типов аддуктов с ЛСР.

В заключении следует отметить, что для кристаллов Eu(dpm)₃+2(пиридин) расстояние ион-донорный атом субстрат – 2,45 Å, что на 0,3 Å больше, чем полученное значение для растворов. Данный результат говорит о правильности проведенных вычислений, т. к. видимо всегда для растворов и паров среднее межядерное расстояние должно увеличиваться по сравнению с кристаллами, но весь вопрос в том и состоит - на какую величину.

Рис. 5. Контурные карты среднеквадратичного отклонения (линии СКО) указаны цифрами на схемах сплошными линиями) иона лантанида в растворе аддукта $Yb(dpm)_3$ с: (1): (а) пиридином, (б) β - метилпиридином, (в) γ - фенилпиридином, (г) γ - метилпиридином при использовании набора измеренных ЛИС ядер, а также для аддукта $Eu(dpm)_3 \alpha$ – метилпиридином при использовании (2): для набора измеренных ЛИС и (3): для набора ДЛИС

Если если аддукт ЛСР-субстрат не имеет аксиальную симметрию, то значения значительно больше $R_{HAM} = (0,092 - 0,363)$ (рис. 5 (б)). В этом случае расстояние иондонорный атом субстрата существенно увеличивается, а ЛИС существенно меньше. При использовании набора ЛИС (нет аксиальной симметрии) для аддукта Eu(dpm)₃ с α -замещенными азолами ион лантанида располагается практически на метильной группе, а при использовании набора ДЛИС или ЛИС для Yb(dpm)₃ ион лантанида отклоняется в сторону от объемного α -заместителя, что может быть признано верным с точки зрения физической модели процесса координации (рис. 5 (б)). Все остальные случаи – наличие нескольких типов аддуктов в растворе, наличие менее объемного заместителя к месту координации влияет на геометрические параметры аддукта ЛСР-субстрат и приводит к частичному выходу иона лантанида из плоскости субстрат на угол $\approx (15 - 25)^0$.

ЗАКЛЮЧЕНИЕ

В результате проведенного комплексного теоретико-экспериментального исследования электронной и пространственной структуры сложных соединений с редкоземельными ионами, образующими комплекс ЛСР-субстрат в разных типах растворов показано, что:

1). Если в α -положении к координационному центру – атому азота пиридинового фрагмента введен объемный заместитель, то при комнатной температуре аксиальная симметрия аддукта ЛСР-субстрат не может достигаться за счет свободного вращения вокруг оси ион-донорный атом и главная магнитная ось комплекса не совпадает с направлением координационной связи ион-атом азота субстрата. В этом случае наблюдается отклонение симметрии аддукта от аксиальной, что сопровождается увеличением фактора невязки теория-эксперимент до $R_{GAM} = 0,2 - 0,5$.

2). Если при оценке гипотезы о структуре комплекса ЛСР-субстрат выполняются несколько основных критериев: а) наличие аксиальной симметрии, б) стехиометрия 1:1, в) достоверно разделены диполь-дипольное и константное сверхтонкое взаимодействие, то фактор невязки теория-эксперимент резко снижается до $R_{GAM} = 0,001 - 0,015$.

3). По наборам дипольных лантанидных индуцированных сдвигов (ДЛИС) резонансных частот ядер субстрата в спектрах ЯМР установлено, что рассчитанное расстояние ион лантанида-донорный атом субстрата (длина координационной связи) в растворе на $d_{\text{Ln-N}} = (0,08 - 0,3)$ Å больше, чем для того же аддукта в кристалле $d_{\text{Ln-N}} = 2,75 - 2,53$ Å.

4). Только для некоторых аддуктов ЛСР-субстрат с лигандами (dpm) в растворе образуются комплексы состава 1:1, а для лигандов (fod)₃ практически всегда комплексы состава 1:1 и 1:2. Поэтому величины индуцированных сдвигов сигналов ядер в спектре ЯМР соединения содержат вклады от различных типов комплексов и оцениваемая геометрия аддукта ЛСР-субстрат по-видимому не может быть признана достоверной.

СПИСОК ОБОЗНАЧЕНИЙ

R_{GAM} – кристаллографический R-фактор Гамильнона

КВЛ – квантовый выход люминесценции;

ЯМР ¹Н и ¹³С - ядерный магнитный резонанс для ядер водорода и углерода;

ЛСР – лантанидный сдвигающий реагент;

ПСР – парамагнитный сдвигающий реагент;

РЗЭ – редкоземельные элементы;

(dpm) – лиганд 1,2,2,6,6-тетраметилгептан-3,5-диондипивалометан;

(fod) – лиганд 6,6,7,7,8,8,8-гептафтор-2-2-диметил-3,5-октандион;

Индексы:

GAM - R-фактор Гамильтона;

СПИСОК ЛИТЕРАТУРЫ

1. Bleany B. NMR shifts in solution due to lanthanide ions // J. Magn. Resonance. 1972. Vol. 8, №1. P. 91 - 100.

2. Nuclear Magnetic Resonance Shifts-Reagents. / Ed. Sivers R. London: N.-Y, 1973. 376 p.

3. **Обухов А.Е.** Спектроскопия основного и возбужденных состояний многоатомных соединений в разных условиях. Москва: Изд-во "Спутник+", 2010. 274 с. (ББК 22.344. О-26. ISBN 978-5-9973-0657-1.).

4. Галлиулин М.А., Зволинский В.П., Фомичев А.А., Плешаков В.Г., Гусаров А.Н., Захаров В.Ф., Григорьев Г.В., Обухов А. Е., Простаков Н.С. Изучение изомерии N-(4-азафлуоренилиден-9)-арил(циклогексил)аминов методом ПМР с применением лантанидного сдвигающего реагента Eu(ДПМ)₃ // Координационная химия. 1981. Т. 7, № 4. С. 523 - 532.

5. Золин В.Ф., Коренева Л.Г., Обухов А.Е. и др. Использование спектров люминесценции аддуктов β - дикетонатов европия с метилзамещенными пиридинами для интерпретации данных ЯМР, полученных с применением лантанидных сдвигающих реагентов // Теоретическая и экспериментальная химия. 1982. Т. 18. №. 2. С. 193 - 200.

6. Золин В.Ф. и Коренева Л.Г. Редкоземельный зонд в химии и биологии. М.: Наука, 1980. 350 с.

7. Willcott M.R., Lenkinski R.E., Davis R.E. Interpretation of the Pseudocontacts model for Nuclear Magnetic Resonance Shifts Reagents. I. The Agriment Factor R. // JACS. 1972. Vol. 94, № 5. P. 557 - 563.

8.**McConnell H. M. and Robertson R. E.** Isotropic NMR shifts // J. Chem. Phys. 1958. Vol. 29, № 9. P. 1361 - 1365.

A. E. Obukhov

THE PHYSICAL PRINCIPLES OF APPLICATION SPECTROSCOPY OF THE NUCLEAR MAGNETIC RESONANCE AND LUMINESCENCE FOR THE STUDYING OF THE STRUCTURE AND SUPERTHIN ELECTRONE-NUCLEAR INTERACTION IN THE DIFFERENT COMPLEXES OF MOLECULES AND WITH PARAMAGNETIC IONS OF LANTANIDE

Moscow Power Engineering Institute (technical university), Russia, 111250, Moscow, Krasnokazarmennaya st., 14, e-mail: aobukhov@fo.gpi.ru

The NMR ¹³C and ¹H spectra and parameters spectra a luminescence ion europium of Ln(fod)₃ and Ln(dpm)₃ (where paramagnetic of ions of lantanide $Ln^{3+} = Pr$, Sm, Dy, Ho, Er, Eu, Yb, and substrates = 1-, 2-, 3-pic and 3,5-, 2,4,5-, -lut, and [1-4]azafluorene) in CDCl₃ and CCl₄ were observed at 77 and 300K and lanthanide-induced shift for all of atoms of protons and of carbons, including those of the chelate, were calculated using the complete dipolar-shift equation. If is observed the deviation of symmetry adduct from axial in this case, to is accompanied by increase of the factor are the factors of the coordination: theory - experiment up to R_{GAM} = 0,2 - 0,5; 2). If at an estimation of a hypothesis about structure of a complex the LSR-substrate the basic criteria are carried out some: 1) presence of axial symmetry, 2) stechiometry is 1:1, 3) are authentically divided the dipole and constant superthin interaction are the R-factors of the coordination of theory and of experiment sharply is reduced up to R_{GAM} = 0,001 - 0,015; 3). On sets dipolare lanthanide induced shifts of resonant frequencies of nucleus of a substratum in spectra NMR ¹³C and ¹H is established, that the designed length of coordination communication an ion lanthanide - donor-atoms of a substratum in a solution is in a range d_{ln}-N_{subsr} = 2,75 - 2,53 Å and on d_{ln}-N_{subsr} = 0,08 - 0,3 Å more, than for the same adduct LSR-substrate in a crystal.

ABSORPTION, LUMINESCENCE, LIFETIME, NUCLEAR MAGNETIC RESONANS, ANISOTROPY of the MAGNETIC SUSCEPTIBILITY, PARAMAGNETISM, MOLECULE