

УДК 517.443:535.36

Г.С. Ханян

Центральный институт авиационного моторостроения им. П.И. Баранова, Россия 111116, Москва, Авиамоторная ул., 2, E-mail: dep007@rtc.ciam.ru

ОПРЕДЕЛЕНИЕ МГНОВЕННОЙ ЧАСТОТЫ ЛЧМ-СИГНАЛА ДИФФЕРЕНЦИАЛЬНО-ФАЗОВЫМ МЕТОДОМ СПЕКТРАЛЬНОГО АНАЛИЗА

Предложен метод определения мгновенной частоты ЛЧМ-сигнала – частотномодулированного гармонического колебания с линейно изменяющейся во времени частотой. Метод основан на использовании фазовых соотношений, получаемых дискретным преобразованием Фурье, выполняемым над перекрывающимися фрагментами сигнала ограниченной длительности. Проводятся численные эксперименты по математическому моделированию и спектральному анализу ЛЧМ-сигнала для подтверждения метода и определения границ его применимости.

ЛЧМ-СИГНАЛ, ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ, СПЕКТР РАЗНОСТИ ФАЗ, ОЦЕНКА ЧАСТОТЫ, ПОГРЕШНОСТИ

введение

Гармоническое колебание бесконечной длительности, будучи «эталоном» в обширном семействе сигналов, не может быть носителем содержательной информации без модуляции – медленного изменения одного из его параметров – амплитуды, частоты или фазы. Одним из интересных и актуальных типов модуляции является линейная частотная модуляция, исследованию которой дифференциально-фазовым методом [1], апробированным на ЛДА-сигнале [2], посвящена настоящая работа.

Измерение скорости изменения частоты ЛЧМ-сигнала применяется для компенсации эффекта Доплера в мобильной связи, в качестве способа формирования и обработки зондирующего импульса в радиолокации [3], для оценки лагранжева ускорения частицы в турбулентном потоке [4], в задачах диагностики технического состояния авиационных двигателей и энергетических установок, в других приложениях оптики, электродинамики, аэрогидромеханики, использующих теорию и практику цифровой обработки сигналов.

Кроме того, фрагменты ЛЧМ-сигналов конечной длительности (т.н. чирпы – *от англ.* chirp) обладают самостоятельной математической ценностью. Подвергнутые амплитудной модуляции, масштабированию и сдвигу, они служат базисными функциями чирплет-преобразования – естественного обобщения вейвлет-преобразования. В то же время для детектирования ЛЧМ-сигнала могут использоваться отличающиеся от «материнского» типы двумерных преобразований, например, преобразование Радона [5].

Примечательным для теории ДПФ фактом является то, что вычислительная процедура предлагаемой модификации дифференциально-фазового метода использовалась и в работе [2] – для оценки глубины амплитудной модуляции ЛДА-сигнала. Отличие состоит в том, что построенные градуировочные характеристики ЛДА- и ЛЧМ-сигналов интерполируются различными функциями (кубической параболой и прямой линией, соответственно).

ЛИНЕЙНО ЧАСТОТНО-МОДУЛИРОВАННЫЙ СИГНАЛ

Рассматривается аналоговый частотно-модулированный гармонический сигнал

$$s(t) = a_0 \cos(2\pi f(t)t + \varphi_0); \quad -T \le t < T$$
(1)

с постоянными амплитудой *a*₀, начальной фазой ϕ_0 и линейно изменяющейся во времени мгновенной частотой

$$f(t) = f_0 + \alpha F t / T; \quad |\alpha| F < f_0 < F / 2 - |\alpha| F.$$
(2)

Сигнал наблюдается в течение времени 2T секунд в полосе частот с предельно заданной шириной F/2 Гц. Безразмерный параметр α определяет глубину частотной модуляции, диапазон возможных значений несущей частоты f_0 , и определяет общепринятые в литературе [6 – 7] другие параметры, характеризующие ЛЧМ-сигнал. К ним относятся:

- скорость изменения частоты $\gamma = \alpha F/T$ (нарастания при $\alpha > 0$, торможения при $\alpha < 0$);
- девиация частоты $\delta = \alpha F$, показывающая максимальное отклонение частоты f в положительную или отрицательную сторону от несущей частоты f_0 , так что за время наблюдения мгновенная частота изменяется в пределах $f_0 \pm \delta$;
- база сигнала b = 2δ·2T, представляющая собой произведение полной (удвоенной) девиации частоты на длительность сигнала (ЛЧМ-импульса).

Последний параметр рассматривается в литературе как основной параметр ЛЧМмодуляции. Так, принято считать ЛЧМ-сигнал «простым», если $b \approx 1$ и «сложным», если b >> 1 [6]. В настоящей работе характерное значение базы составляет $b \approx 5$, что соответствует значению параметра $\alpha \approx 0,005$ при выбранном «стандартном» значении произведения TF = 512. Примечательно, что параметр α не зависит от этого произведения и является обезразмеренной по нему, а потому, более «универсальной» базой сигнала, теоретически возможные значения которой находятся в диапазоне $-1/4 < \alpha < +1/4$ (границы которого устанавливаются из решения относительно α неравенства (2), выражающего, в свою очередь, тот факт, что 0 < f(t) < F/2). Отметим при этом, что «центральное», нулевое значение α соответствует чистому гармоническому сигналу.

СПЕКТРАЛЬНЫЙ АНАЛИЗ ЛЧМ-СИГНАЛА

Методика дискретного спектрального фурье-анализа сигнала (1) заключается в следующем. Аналоговая реализация s(t) дискретизируется с частотой F, и полученная дискретная последовательность отсчетов сигнала – цифровая реализация длиной 2N=2TF разбивается на четыре последовательных участка длиной N/2 и длительностью T/2 каждый. Из этих участков составляются две пары перекрывающихся N-точечных цифровых реализаций, имеющие общее число N/2 отсчетов:

$$s_{l,j}[n] = s(n/F + (2j+l-3)T/4); \quad n = 0, 1, ..., N-1; \quad j = 0, 1; \quad l = \pm 1.$$
 (3)

Здесь числа *n*, *l* и *j* нумеруют, соответственно, отсчет реализации, пару реализаций и перекрывающийся участок в паре.

Взаимный спектральный анализ над выбранной *l*-й парой реализаций с участками j = 0 и j = 1 проводится с усечением каждой реализации пары на *k* отсчетов на *k*-м шаге алгоритма, выполняющего следующую запрограммированную последовательность действий:

• дискретное преобразование Фурье усеченных до N_k отсчетов реализаций пары:

$$S_{l,j,k}[m] = \frac{1}{N_k} \sum_{n=0}^{N_k - 1} s_{l,j}[n] e^{-i2\pi mn/N_k}; \quad m = 0, 1, ..., N_k - 1; \quad N_k = N - k; \quad k = 0, 1, 2, ... \quad (4)$$

• вычисление взаимного спектра амплитуд и спектра разности фаз реализаций:

$$A_{l,k}[m] = 2\sqrt{|S_{l,0,k}^*[m]S_{l,1,k}[m]|}; \quad \Phi_{l,k}[m] = \arg S_{l,1,k}[m] - \arg S_{l,0,k}[m]; \quad m = 1, 2, ..., M_k \quad (5)$$

где $M_k = [N_k/2]$ – дискретная длина спектра (здесь и далее квадратные скобки означают целую часть заключенного в них выражения);

• поиск максимума во взаимном спектре амплитуд:

$$A_{l,k}[m_k] = \max_{m=1,\dots,m_k,\dots,M_k} A_{l,k}[m];$$
(6)

• использование фазы на адресе m_k максимума (6) для построения характеристики

$$\mu_k(N_k) = \frac{\Phi_{l,k}[m_k]}{\pi} \frac{N_0}{[N_0^2 / N_k]},$$
(7)

служащей в дальнейшем для оценки параметра α.

С методологической точки зрения обе пары $l = \pm 1$ равноценны, и для определенности в настоящей работе рассматривается правая, более поздняя во времени, пара с индексом l = 1.

Реализации процесса (1) моделируются и анализируются программой цифровой обработки сигналов *quatrix.exe*[®] [8], в которую внедрены процедуры, осуществляющие вычисления по формулам (3) – (7).

На рис. 1 и рис. 2 приведены результаты проводимого спектрального анализа. В окнах *Signal_*0' (внизу экрана ПК) и *Signal_*1' (в середине экрана) нарисованы осциллограммы (серым цветом) перекрывающихся участков сигнала с индексами j = 0 и j = 1 соответственно, вместе с автоспектрами амплитуд (черным цветом) этих цифровых реализаций:

$$A_{1,j,k}[m] = 2 |S_{1,j,k}[m]|; \quad m = 1, 2, ..., M_k; \quad j = 0, 1.$$
(8)

В верхнем окне экрана ПК нарисованы взаимные спектры, вычисленные по формулам (5).

Рис. 1 относится к моделированию гармонического сигнала со скоростью увеличения частоты $\gamma = 7,68 \ \Gamma \mu$ сек, рис. 2 – к моделированию чистого гармонического сигнала ($\gamma = 0$). В остальном параметры процессов и условия их анализа на обоих рисунках одинаковы: несущая частота сигнала $f_0 = 25 \ \Gamma \mu$, фаза $\phi_0 = 30^\circ$, амплитуда $a_0 = 100$, исходная длина цифровой реализации N = 512 (при длительности T = 1 сек), число усеченных отсчетов k = 7.

Очевидно принципиальное отличие структуры спектров амплитуд и фаз ЛЧМ-сигнала от структуры соответствующих спектров чистого гармонического сигнала. Пики спектров амплитуд ЛЧМ-сигнала уширены, и вся информативность спектра разности фаз сосредоточена в частотной полосе уширения пика взаимного спектра амплитуд, в то время как спектр разности фаз участков чистого гармонического сигнала имеет альтернирующий между значениями $\pm \pi$ характер, причем, равномерно во всем диапазоне частот.

Отмеченное отличие в поведении спектров фаз и используется в излагаемом ниже методе оценки параметра α.

Рис. 2. Спектральный анализ чистого гармонического сигнала

ОСНОВНАЯ ВЫЧИСЛИТЕЛЬНАЯ ПРОЦЕДУРА МЕТОДА

Вычислительная процедура метода показана на рис. 3, на котором изображен график характеристики (7), построенный средствами табличного процессора *MS Excel*.

В формуле (7) используется фаза, приведенная по модулю 2π , поэтому правая часть этой формулы изменяется в пределах ± 1. Конечный результат приводится к границам ± 1/2, и в результате график параметра μ_k принимает пилообразную форму

$$\mu_k = -\beta N_k + c \tag{9}$$

с достаточно близкими для обоснования состоятельности метода значениями параметров чередующихся линейных участков – коэффициентов наклона β и констант смещения *с*. Последний параметр не играет никакой роли в излагаемом методе, в то время как именно параметр β представляет собой косвенную оценку параметра α.

Рис. 3. Поведение характеристики µ_k(N_k) чистого ЛЧМ-сигнала

Для оценки устойчивости поведения характеристики $\mu_k(N_k)$ по отношению к искажающим факторам, в качестве последнего использовался шум, генерируемый датчиком псевдослучайных чисел *random*. Равномерно распределенный шум подмешивался к цифровым реализациям (3) сигнала (1) в отношении 1:1 по размаху амплитуды. Характеристика $\mu_k(N_k)$ зашумленного таким способом исходного (изображенного в верхней части рис. 3) ЛЧМ-сигнала показана на рис. 4.

Рис. 4. Поведение характеристики $\mu_k(N_k)$ зашумленного ЛЧМ-сигнала

Из сравнения рис. 3 и рис. 4 видно, что довольно заметное зашумление ЛЧМ-сигнала несильно искажает поведение характеристики $\mu_k(N_k)$.

Для определения связи между параметрами α и β проводился численный эксперимент, в котором процесс (1) моделировался с различными значениями параметра α (от 0 до 0,02 с шагом 0,0005) при неизменной безразмерной несущей частоте $f_0T = 32,25$ и исходной длине реализации N = 512 отсчетов. Для каждого заданного значения α строилась характеристика $\mu_k(N_k)$, и на подходящем линейном участке строилась линия регрессии для определения параметра β . Построенный таким образом график зависимости $\beta(\alpha)$ представлен на рис. 5.

Рис. 5. Результаты численного эксперимента по построению графика зависимости β(α)

ГРАНИЦЫ ПРИМЕНИМОСТИ И ОЦЕНКА ПОГРЕШНОСТИ МЕТОДА

Из рис. 5 видно, что существует пороговое значение $\alpha^* \approx 0,007$, разделяющее данные измерений параметра β на два кластера, нанесенные «кружочками» и «треугольниками» – с наклонной и горизонтальной линиями регрессии, соответственно.

По обе стороны от горизонтальной линии поведение β носит волнообразный характер, не находящий объяснения ни в рамках традиционно излагаемой в литературе теории дискретного спектрального анализа, ни дифференциально-фазового метода определения частоты [1], применяемого в настоящей работе для оценки параметра α.

Это обстоятельство вынуждает сузить границы практической применимости дифференциально-фазового метода, а именно: считать $|\alpha| < \alpha^*$ «рабочим» диапазоном изменения параметра α (вместо теоретически установленного выше диапазона $|\alpha| < 0.25$), ограничиваясь рассмотрением лишь наклонной линии регрессии, по обе стороны от которой с приемлемым разбросом ложатся экспериментально определенные значения коэффициента наклона β . Соответствующая порогу α^* максимальная полная девиация частоты ЛЧМ-сигнала составляет ≈ 2.8 % от частоты Найквиста *F*/2.

Для оценки погрешности измерения параметра β был проведен численный эксперимент, в котором сигнал (1) моделировался при неизменном значении α =0,005, но с вариацией безразмерной частоты сигнала f_0T в пределах одного бина – от 32 до 33 с шагом по дробной части частоты $\{f_0T\} = f_0T - [f_0T]$, равным 0,1. Именно дробная часть безразмерной частоты определяет размеры известного в литературе по спектральному анализу эффекта просачивания амплитуды [1, 7], выражающегося в уширении пика гармонической составляющей спектра амплитуд, сопровождаемом занижением истинного значения амплитуды на величину от 0 (при целых значениях f_0T) до 36 % (при полуцелых).

Результаты этого численного эксперимента приведены на рис. 6 и нанесены «квадратиками» на вертикальную линию с абсциссой заданного значения α на рис. 5.

Рис. 6. Результаты численного эксперимента по определению погрешности измерения β

Видно, что данные по β располагаются между 0,06 и 0,07, оказываясь заниженными при целых f_0T , и завышенными – при полуцелых. Это позволяет утверждать, что абсолютная погрешность измерения β примерно равна \pm 0,005, что соответствует относительной погрешности $\varepsilon = \pm 0,005 / (13,739 \times 0,005 - 0,001) = \pm 7,386$ % определения β при данном α . На основании этого, с некоторым запасом, можно ограничить относительную погрешность определения β на всем наклонном участке величиной 10%.

ГРАДУИРОВОЧНАЯ ХАРАКТЕРИСТИКА ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРА а

Наличие на рис. 5 наклонного линейного участка позволяет путем обращения этой функциональной зависимости построить линейную градуировочную зависимость для оценки параметра α по результатам дискретного спектрального анализа ЛЧМ-сигнала. Такая зависимость представлена на рис. 7 и ее можно описать формулой

$$\alpha = p\beta + d \,, \tag{10}$$

в которой величиной смещения *d* можно пренебречь в силу ее малости по сравнению с коэффициентом *p*.

Рис. 7. Градуировочная зависимость $\alpha(\beta)$, снятая на фиксированной центральной частоте f_0T

Зависимость (10) построена, как отмечено выше, для фиксированного значения безразмерной частоты $f_0T = 32,25$. Для окончательной оценки параметра α требуется определить зависимость самого параметра β от fT, где f – произвольная несущая частота. Результаты численного моделирования по определению этой зависимости для значения

 $\alpha = 0,005$ представлены на рис. 8.

Рис. 8. Градуировочная зависимость $\beta(fT)$, снятая для фиксированного значения параметра α

Несомненно, положительным фактом является то, что полученная характеристика для указанного (и, как показали численные эксперименты, для других значений α) также оказалась линейной:

$$\beta = qfT + r \,. \tag{11}$$

Тот факт, что при постоянном значении α зависимость $\beta(fT)$ линейна, позволяет пользоваться для оценки α единственной градуировочной зависимостью (10), снятой на опорной частоте f_0T . Если измеренная несущая частота ЛЧМ-сигнала равна f', то для оценки α в указанную функцию следует подставить $\beta = \beta' f_0 / f'$, где $\beta' - измеренный коэффициент наклона линии (9). В результате, окончательная формула для оценки скорости изменения частоты ЛЧМ-сигнала выглядит следующим образом:$

$$\alpha = p\beta' f_0 / f', \qquad (12)$$

где p = 0,0725 и $f_0 = 32,25$ Гц для выбранной длины цифровой реализации N = TF = 512 отсчетов.

Для окончательного определения мгновенной частоты (2) остается отметить, что за оценку несущей частоты сигнала (с точностью до спектрального разрешения ДПФ) можно принять f' = m'/T, где m' - адрес пика взаимного спектра амплитуд исходной, т.е. неусеченной пары реализаций с длиной $N_0 = N$ отсчетов, вычисляемый на шаге с номером k = 0 описанной выше процедуры снятия характеристики (9).

ЗАКЛЮЧЕНИЕ

Разработан новый метод оценивания скорости изменения мгновенной частоты линейно частотно-модулированного гармонического сигнала, основанный на фазовых соотношениях между перекрывающимися участками ЛЧМ-сигнала.

Предлагаемый метод является развитием высокоточного дифференциально-фазового метода определения частоты чистого и зашумленного гармонического сигнала [1] и его распространением на анализ частотно-модулированного гармонического сигнала.

Показано, что наиболее универсальным, «автомодельным» выражением скорости изменения частоты является безразмерный параметр $\alpha = \gamma T/F$, где γ – первая производная по

времени мгновенной частоты сигнала, *T* – половина времени наблюдения сигнала, *F* – удвоенная ширина полосы частот, в которой протекает сигнал.

Метод позволяет оценить скорость изменения частоты ЛЧМ-сигнала с относительной погрешностью не более 10% в рабочем диапазоне $|\alpha| < \alpha^*$ изменений параметра α , граница которого $\alpha^* \approx 0,007$ соответствует заметной, и в то же время умеренной модуляции частоты. При этом несущая частота оценивается с точностью до спектрального разрешения ДПФ.

Алгоритмическая реализация метода достаточно простая, а вычислительная процедура сравнительно нетрудоемкая (требуется лишь отказ от алгоритма БПФ при вычислении ДПФ, что некритично для современных ПК).

Исследование фазовых соотношений может оказаться плодотворным не только в области спектрального фурье-анализа, но и для развития теории вейвлетов, чирплетов, варблетов и других типов преобразований сигналов.

СПИСОК ОБОЗНАЧЕНИЙ

- f(t) мгновенная частота ЛЧМ-сигнала, Гц;
- f_0 несущая частота сигнала, Гц;
- α безразмерная скорость изменения частоты.

СПИСОК ЛИТЕРАТУРЫ

1. Ханян Г.С. Дифференциально-фазовый метод определения частоты зашумленного гармонического сигнала // «Цифровая обработка сигналов и ее применение». 9-я международная конференция и выставка. 28-30 марта 2007 г., Москва, Институт проблем управления РАН. Доклады. В 2-х т. – Труды Российского научно-технического общества радиотехники, электроники и связи им. А.С. Попова. Серия: Цифровая обработка сигналов и её применение. – Вып. IX-1, С. 84-87.

2. Ханян Г.С. Развитие и апробация дифференциально-фазового метода спектрального анализа при измерениях частоты и затухания моделируемых и реальных ЛДА-сигналов // Оптические методы исследования потоков: Труды 10-й Международной научно-технической конференции / Под ред. Ю.Н. Дубнищева, Б.С. Ринкевичюса – М.: Издательский дом МЭИ, 2009. – С. 90-93.

3. **Комаров И.В., Смольский С.М.** Основы теории радиолокационных систем с непрерывным излучением частотно-модулированных колебаний. М.: Горячая линия – Телеком, 2010. – 392 с.

4. Kinzel M., Nobach H., Tropea C., and Bodenschatz E., Measurement of Lagrangian Acceleration Using the Laser Doppler Technique // in *Proc. 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics*, Lisbon, Portugal, 26-29 June, 2006, 11 pp.

5. Wang M., Chan A.K., and Chui Ch. K. Linear frequency-modulated signal detection using Radon-ambiguity transform *// IEEE Trans. Signal Processing*, vol. 46, no. 3, March 1998, pp. 571-586.

6. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая Школа, 1988. – 448 с.

7. Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2002. – 608 с.

8. Ханян Г.С., Шеина Н.В. Система цифровой обработки сигналов для информационного обеспечения стендовых испытаний ГТД // "Научный вклад в создание авиационных двигателей". Сб. трудов ЦИАМ под ред. В.А. Скибина и В.И. Солонина. – М.: "Машиностроение", 2000, кн. 2, с. 534-536.

G.S. Khanyan

Central Institute of Aviation Motors, Russia, 111116, Moscow, Aviamotornaya st., 2, E-mail: dep007@rtc.ciam.ru

DETERMINATION OF LFM-SIGNAL'S INSTANTANEOUS FREQUENCY BY PHASE-DIFFERENTIAL METHOD OF SPECTRAL ANALYSIS

A method for determining instantaneous frequency of LFM-signal (frequency-modulated harmonic oscillation with a linear time-varying frequency) is proposed. The method is based on phase relationships obtained by means of discrete Fourier transform of the signal's limitedduration overlapping fragments. Numerical experiments on LFM-signal mathematical modeling and processing are performed to verify the method and determine the boundaries of its applicability.

LFM-SIGNAL, DISCRETE FOURIER TRANSFORM, PHASE DIFFERENCE SPECTRUM, ESTIMATION OF FREQUENCY, ERRORS