

УДК: 535.31:681.7.001

И.Л. Расковская

Московский энергетический институт (технический университет), Россия, 111250, Москва, Красноказарменная ул., 14.

ВОЛНОВЫЕ МЕТОДЫ В ЗАДАЧАХ ЛАЗЕРНОЙ РЕФРАКТОГРАФИИ

Проведено моделирование рефрактограмм структурированного лазерного излучения на основе волновых методов. Для получения расчетных рефрактограмм в объеме сферического и плоского слоев применен спектральный метод, для моделирования в плоскости наблюдения использована формула Грина.

РЕФРАКТОГРАММА, ВОЛНОВОЙ МЕТОД, ФОРМУЛА ГРИНА

1. ВВЕДЕНИЕ

Метод лазерной рефрактографии позволяет осуществлять визуализацию и количественную диагностику оптически неоднородных сред [1 – 2]. Математическое моделирование рефракционных картин (рефрактограмм), получаемых при зондировании исследуемой среды структурированными [3] лазерными пучками, является основополагающим этапом при проведении количественной диагностики.

Геометрооптические модели рефрактограмм использовались для решения обратных задач восстановления показателя преломления, температуры, и солености в различных средах [4 – 8]. Однако, при наличии сложной лучевой картины, формировании каустик (рис. 1) и необходимости учета дифракционных эффектов, геометрооптический подход оказывается несостоятельным и требуется применение волновых методов [9 – 10].

Рис. 1. Траектории геометрооптических лучей в плоском экспоненциальном слое

Моделирование распространения структурированных пучков в соответствии с рис. 2, следует проводить на трех участках: в свободном пространстве от источника излучения до неоднородности, внутри неоднородности и в свободном пространстве от неоднородности до плоскости наблюдения (экрана, на котором наблюдается экспериментальное

рефракционное изображение). В исходной постановке задачи будем считать, что поле на входе в неоднородность полностью определяется известными характеристиками пучка от источника структурированного излучения [3]. Поэтому задача сводится к рассмотрению распространения пучка непосредственно в неоднородной среде и от выхода из неоднородной среды до плоскости наблюдения.

Рис. 2. Распространение зондирующего неоднородность структурированного пучка от источника до плоскости наблюдения: 1 – лазер, 2 – оптическая система формирования СЛИ, 3 – неоднородная среда, 4 – экран в плоскости наблюдения

Распространение пучка в неоднородной среде описывается уравнением Гельмгольца, которое при ряде допущений может быть сведено к параболическому [9] и решено численными методами. Альтернативой такому подходу является использование спектрального метода, идея которого была предложена в [10] для описания распространения лазерного пучка в среде с акустическим полем. В данной работе указанный метод используется для нахождения поля пучка в температурном пограничном слое. Преимуществом его является возможность получения приближенного решения в аналитической форме, что дает возможность решения обратной задачи без использования трудоемких вычислительных методов.

2. ПРИМЕНЕНИЕ СПЕКТРАЛЬНОГО ПОДХОДА ДЛЯ МОДЕЛИРОВАНИЯ РАСПРОСТРАНЕНИЯ ЛАЗЕРНОГО ПУЧКА В СЛАБОНЕОДНОРОДНОЙ СРЕДЕ

Лазерные пучки для любого типа СЛИ могут быть представлены в виде пространственного (углового) спектра, определяемого данным видом ДОЭ [3]. Распространение каждой пространственной гармоники с неоднородной среде может рассматриваться независимо и в соответствии с принципом суперпозиции интегрироваться на выходе из среды [10]. Ниже рассмотрена математическая модель распространения лазерного пучка в неоднородной среде, соответствующая такому подходу.

Рассмотрим лазерный пучок, распространяющийся в направлении оси OZ, в среде с показателем преломления n_0 . Пусть E(x, y, 0) – комплексная амплитуда поля пучка при z = 0 на входе в среду. Требуется определить поле E(x, y, z) в среде в точке наблюдения (x, y, z). Произведем двумерное фурье-преобразование функции E(x, y, 0):

$$E(x, y, 0) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_0(k_x, k_y) \exp[i(k_x x + k_y y)] dk_x dk_y, \qquad (1)$$

где k_x и k_y – компоненты волнового вектора k,

$$F_0(k_x, k_y) = \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E(x, y, 0) \exp\left[-i\left(k_x x + k_y y\right)\right] dx dy$$
(2)

– угловой (пространственный) спектр функции E(x, y, 0). Если угловой спектр $F(k_x, k_y, z)$ известен при любом *z*, то искомая функция E(x, y, z) определяется выражением [9]

$$E(x, y, z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(k_x, k_y, z) \exp\left[i\left(k_x x + k_y y\right)\right] dk_x dk_y.$$
(3)

Поскольку функция E(x, y, z) удовлетворяет волновому уравнению

$$\Delta E + k^2 E = 0, \qquad (4)$$

то, подставляя (3) в уравнение (4), получаем дифференциальное уравнение для функции $F(k_x, k_y, z)$:

$$\frac{d^2F}{dz^2} + \left(k^2 - k_x^2 - k_y^2\right)F = 0 \quad . \tag{5}$$

Решая это уравнение при условии $F(k_x, k_y, 0) = F_0(k_x, k_y)$, найдем частное решение, соответствующее волне, распространяющейся в положительном направлении оси OZ,

$$F_0(k_x, k_y, z) = F_0(k_x, k_y) \exp\left(iz\sqrt{k^2 - k_x^2 - k_y^2}\right).$$
 (6)

Угловой спектр, по мере удаления точки наблюдения от входа в среду, изменяется, что связано со сдвигом фаз между различными спектральными компонентами (плоскими волнами, распространяющимися под разными углами к оси OZ). Рассмотрим, как распространяется волновой пучок с узким угловым спектром, т.е. пучок, ширина которого значительно больше длины оптической волны. Это означает, что поперечные компоненты волнового вектора k_x и k_y малы по сравнению с его абсолютной величиной k.

В этом случае в экспоненте (6) выражение $\sqrt{k^2 - k_x^2 - k_y^2}$ можно разложить в ряд, сохранив лишь квадратичные по k_x и k_y члены. Тогда, согласно (3) пучок будет описываться функцией

$$E(x, y, z) = e^{ikz} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_0(k_x, k_y) \exp\left[i\left(k_x x + k_y y\right)\right] \exp\left[-\frac{iz}{2k}\left(k_x^2 + k_y^2\right)\right] dk_x dk_y = e^{ikz} A(x, y, z),$$
(7)

где A(x, y, z) – амплитуда волны и, в соответствии с (2)

$$F_{0}(k_{x},k_{y}) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E(\xi,\eta,0) \exp(-i(k_{x}\xi + k_{y}\eta)) d\xi d\eta.$$
(8)

Подставив (8) в (7) и интегрируя по k_x и k_y , получим для амплитуды волны:

$$A(x, y, z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x - \xi, y - \eta, z) A(\xi, \eta, z = 0) d\xi d\eta, \qquad (9)$$

где функция Грина

$$G = \frac{\exp\left(-\frac{(x-\xi)^2}{4\Lambda z}\right)}{\sqrt{4\pi\Lambda z}} \times \frac{\exp\left(-\frac{(y-\eta)^2}{4\Lambda z}\right)}{\sqrt{4\pi\Lambda z}}$$
(10)

Анализ структуры выражения (9) показывает, что оно является точным решением параболического уравнения с мнимым коэффициентом диффузии

$$\Lambda = -\frac{1}{2ik},\tag{11}$$

которое описывает распространение пучка в квазиоптическом приближении.

Математическая модель и геометрические параметры задачи иллюстрируются рис. 3. В области $z \ge 0$ находится плоско или сферически слоистая оптически неоднородная среда, вектор K_a задает направление градиента поля неоднородности. Лазерный пучок с эффективным радиусом w распространяется в плоскости XOZ, k – оптический волновой вектор, $k = \frac{2\pi}{\lambda}$, где λ – длина оптической волны в среде, α – угол, который ось пучка составляет с осью Z при z = 0. Далее, в соответствии с условиями измерений [1], будем предполагать sin $\alpha << 1$.

Рис. 3. Геометрические параметры задачи

Пусть E(x, y, 0) — комплексная амплитуда поля пучка при z=0 на входе в среду, показатель преломления которой при $z \ge 0$ может быть представлен в виде

$$n(x, y, z) = n_0 + \Delta n(x, y, z),$$
 (12)

причем выполняется соотношение $\delta n = \frac{\Delta n}{n_0} << 1$, где n_0 – показатель преломления невозмущенной среды, а Δn - максимальное отклонение от значения n_0 . Требуется определить комплексную амплитуду E(x, y, z) в среде в точке наблюдения P(x, y, z).

Для решения поставленной задачи поле пучка представляется в виде пространственного спектра, а описание распространения каждой спектральной составляющей в неоднородной среде проводится в рамках приближения геометрической оптики с использованием метода возмущений эйконала и амплитуды [11]. Оптическое поле в точке наблюдения является суперпозицией парциальных волн, интерференция которых с учетом возмущений приводит к искажениям амплитуды и фазы пучка. Использование понятия геометрооптических лучей для парциальных волн накладывает следующее ограничение на дистанцию z при заданном значении длины волны λ и характерном размере неоднородности a:

$$\frac{\lambda z}{q^2} \ll 1. \tag{13}$$

Комплексную амплитуду оптического поля при z=0 представляем в виде

$$E(x, y, 0) = \exp\{ikx\sin\alpha\}A(x, y, 0), \tag{14}$$

где A(x, y, 0) – комплексная амплитуда при $\alpha = 0$. Разложим E(x, y, 0) в спектр по плоским волнам с параметрами k_x и k_y

$$E(x, y, 0) = \exp\{ikx\sin\alpha\} \int_{-\infty-\infty}^{\infty} F(k_x, k_y) \exp\{i(k_x x + k_y y)\} dk_x dk_y, \qquad (15)$$

где $F(k_x, k_y)$ - комплексные амплитуды спектральных составляющих,

$$F(k_x,k_y) = \frac{1}{(2\pi)^2} \int_{-\infty-\infty}^{\infty} A(x,y,0) \exp\{-i(k_x x + k_y y)\} dxdy, \qquad (16)$$

а направление распространения соответствующих плоских волн характеризуется вектором с компонентами ($k_x + k \sin \alpha$, k_y , $\sqrt{k^2 - (k_x + k \sin \alpha)^2 - k_y^2}$). На рис.3 в плоскости XOZ изображен геометрооптический луч, образующий с осью OZ угол α_x и соответствующий парциальной плоской волне с параметрами

$$k_x = k \sin \alpha_x - k \sin \alpha, \ k_y = 0.$$
⁽¹⁷⁾

В соответствии с [10] фаза каждой спектральной составляющей в точке наблюдения P(x, y, z) может быть представлена в виде:

$$\varphi(x, y, z, k_x, k_y) = (k_x + k\sin\alpha)x + k_y y + z\sqrt{k^2 - (k_x + k\sin\alpha)^2 - k_y^2} + \Delta\varphi$$
(18)

и определяется интегрированием значений показателя преломления (12) вдоль соответствующего геометрооптического луча. Первые три слагаемых в (18) соответствуют фазе парциальной волны в невозмущенной среде, а последнее слагаемое определяет возмущение фазы Δφ из-за присутствия оптической неоднородности:

$$\Delta \varphi \left(x, y, z, k_x, k_y \right) = \delta n \cdot f \left(x, y, z, k_x, k_y \right). \tag{19}$$

Функция $f(x, y, z, k_x, k_y)$, обозначаемая в дальнейшем для краткости f, определяется структурой конкретной неоднородности (см.пример далее).

Поле в точке наблюдения *E*(*x*,*y*,*z*) представляет собой суперпозицию парциальных волн с учетом условий их распространения:

$$E(x, y, z) = \int_{-\infty-\infty}^{+\infty+\infty} \frac{F(k_x, k_y)}{\sqrt{\gamma(k_x, k_y, x, y, z)}} \exp\{i[(k_x + k\sin\alpha)x + k_yy + z\sqrt{k^2 - (k_x + k\sin\alpha)^2 - k_y^2} + \Delta\varphi]\}dk_xdk_y,$$
(20)

где $\gamma(k_x, k_y, x, y, z)$ учитывает расходимость лучей в неоднородной среде и определяется на основании уравнений переноса [11] для каждой спектральной составляющей.

Для пучков с узким пространственным спектром $\left(\frac{\lambda}{w} << 1\right)$ возможны дальнейшие

упрощения. С точностью до квадратичных членов разложения функций от k_x в показателе экспоненты (20) представление для комплексной амплитуды лазерного пучка в точке наблюдения имеет вид:

$$E(x, y, z) = \frac{\exp\left\{i\left[kz\cos\alpha + kx\sin\alpha + \Delta\varphi_0\right]\right\}}{\sqrt{\gamma(0, 0, x, y, z)}}A(x, y, z),$$
(21)

где

$$\Delta \varphi_0 \equiv \Delta \varphi_0(x, y, z) \equiv \delta n \cdot f_0(x, y, z), \qquad (22)$$

$$A(x, y, z) = \int_{-\infty-\infty}^{+\infty+\infty} F(k_x, k_y) \exp\{i[k_x(x - z \operatorname{tg} \alpha + \delta n f'] + k_y y - \frac{k_x^2}{2k}(z - \delta n k f'') - \frac{k_y^2}{2k}z]\} dk_x dk_y, \qquad (23)$$

f' и f'' частные производные по k_x .

Первый множитель в (23) соответствует полю плоской волны, распространяющейся в неоднородной среде под углом α к оси Z. Функция $\Delta \phi_0(x, y, z)$ в показателе экспоненты задает возмущение фазы вдоль луча, пришедшего в точку наблюдения (рис.3), а функция расходимости $\gamma(0,0,x,y,z)$, которая для заданной конфигурации неоднородности будет определена ниже, в нулевом приближении описывает дифракционные эффекты, обусловленные наличием пространственной неоднородности с характерным размером *a*.

Второй множитель A(x, y, z) учитывает эффекты, связанные с пространственной ограниченностью пучка, т.е. его дифракцию в условиях неоднородной среды, обусловленную наличием характерного размера *w*. Для получения удобного аналитического представления, описывающего эти эффекты, сравним (21) с выражением для комплексной амплитуды оптического поля $E^0(x, y, z)$ в точке наблюдения P(x, y, z) в невозмущенной среде, т. е. при $\delta n = 0$:

$$E^{0}(x, y, z) = \exp\left\{i\left[kz\cos\alpha + kx\sin\alpha\right]\right\}A^{0}(x, y, z),$$
(24)

$$A^{0}(x, y, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(k_{x}, k_{y}) \exp\{i \left[k_{x}(x - z \operatorname{tg} \alpha) + k_{y}y - \frac{k_{x}^{2}}{2k}z - \frac{k_{y}^{2}}{2k}z \right] dk_{x}dk_{y}.$$
(25)

Если представление (25) допускает разделение переменных, например, для гауссовских пучков

$$A^{0}(x, y, z) = A^{0}_{x}(x, z)A^{0}_{y}(y, z),$$
(26)

то

$$A(x, y, z) = A_x^0 (x + \delta n f', z - \delta n k f'') A_y^0 (y, z).$$
⁽²⁷⁾

Учитывая, что функция f и ее частные производные по k_x зависят от значений координат точки наблюдения P(x, y, z) и вводя обозначения

$$\Delta x(x, y, z) = \delta n f', \quad \Delta z(x, y, z) = -\delta n k f''$$
(28)

$$E(x,y,z) = \frac{\exp\{i[kz\cos\alpha + kx\sin\alpha + \Delta\varphi_0(x,y,z)]\}}{\sqrt{\gamma(x,y,z)}} A_x^0(x + \Delta x(x,y,z), z + \Delta z(x,y,z)) A_y^0(y,z).$$
(29)

Выражение (29) позволяет находить в точке наблюдения P(x, y, z) комплексную амплитуду лазерного пучка, распространяющегося в слабонеоднородной среде, если известна его комплексная амплитуда в однородной среде. Комплексная амплитуда пучка в среде, возмущённой, например, температурным полем, представляется через комплексную амплитуду пучка в невозмущённой среде в той же точке наблюдения посредством формальной замены в функции A_x^0 координат $x \to x + \Delta x$ и $z \to z + \Delta z$, где функция $\Delta x = \Delta x(x, y, z)$ описывает искажения комплексной амплитуды пучка, связанные с рефракционным смещением лучей по оси *OX* в пределах сечения пучка, а $\Delta z = \Delta z(x, y, z)$ задает изменение условий фокусировки и дифракционного расширения пучка в неоднородной среде.

Волновое описание поля пучка позволяет учесть дифракционные эффекты, имеющие место при использовании методов лазерной рефрактографии для исследования оптически неоднородных сред.

3. МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ АСТИГМАТИЧЕСКОГО ЛАЗЕРНОГО ПУЧКА В ОБЪЕМЕ ЭКСПОНЕНЦИАЛЬНОГО ПЛОСКОГО И СФЕРИЧЕСКОГО СЛОЯ

Для определения функций $\Delta \phi_0(x, y, z)$, $\Delta x(x, y, z)$ и $\gamma(x, y, z)$, определенных формулами (22, 28), конкретизируем выражение (12), предполагая, что угол распространения пучка $\alpha = 0$, а неоднородность среды представляет собой слой с экспоненциальной зависимостью показателя преломления:

$$n(x,t) = n_0 (1 + \delta n e^{-\frac{x}{a}}), \qquad (30)$$

где а – характерная толщина неоднородного слоя.

Соответствующая выражению (19), фаза в точке (x, y, z) парциальной волны с параметрами $k_x = k \sin \alpha_x$, $k_y = 0$, определяется интегрированием вдоль соответствующего луча

$$\varphi(x,z) = k \left\{ x_0(x,z) \sin \alpha_x + \int_{x_0}^x (1 + \delta n e^{-\frac{x}{a}}) \frac{dx}{\sin \alpha_x} \right\},\tag{31}$$

где $x_0 = x - z \lg \alpha_x$ - координата входа луча в среду (рис.3). На основе (19), (20) и (21) определяем функцию f, характеризующую структуру неоднородности:

$$f = kae^{-\frac{x}{a}} \left(\frac{\frac{z \cdot tg\alpha_x}{a} - 1}{\sin \alpha_x} \right).$$
(32)

Проведем разложение в ряд по k_x функции (20) в точке $k_x = 0$ и воспользуемся соотношениями (22) и (28) с целью получения явных выражений для $\Delta \phi_0(x,z)$, $\Delta x(x,z)$, $\gamma(x,z)$:

$$\Delta \varphi_0(x,z) = \delta n \cdot kz \cdot e^{\frac{-x}{a}}, \qquad (33)$$

$$\Delta x(x,z) = \delta n \cdot \frac{z^2}{a} \cdot e^{\frac{-x}{a}}, \qquad (34)$$

$$\gamma(x,z) = \sqrt{1 - \delta n \frac{z^2}{a^2} e^{-\frac{x}{a}}} .$$
 (35)

Соотношения (29) и (33-35) определяют оптическое поле лазерного пучка в среде при наличии неоднородности (30).

Численное моделирование проведем для гауссовского пучка, комплексная амплитуда которого $A^0(x, y, z)$ в однородной среде определяется выражением

$$A^{0}(x, y, z) = \frac{A^{0}(0, 0, z_{F})}{\sqrt{1 + D^{2}}} \exp\left\{-\frac{x^{2}}{w^{2}(1 + D^{2})} - \frac{y^{2}}{w^{2}(1 + D^{2})} + i\psi(x, y, z)\right\},$$
(36)

где Ψ - функция, задающая форму волнового фронта, *D* - безразмерная дифракционная длина, *z_F* - координата перетяжки:

$$\psi(x, y, z) = \frac{x^2 + y^2}{w^2(1 + D^2)} \cdot \frac{D}{1 + D^2} - \operatorname{arctg} D, \qquad (37)$$

$$D = \frac{(z - z_F)}{R_0}, \qquad R_0 = \frac{kw^2}{2}, \qquad (38)$$

 R_0 - конфокальный параметр пучка. На основе формул (29), (32-35), в первом приближении метода возмущений эйконала и амлитуды проведен расчет амплитуды гауссова пучка в неоднородности (30) на дистанции z:

$$A(x, y, z) = \frac{A^{0}(0, 0, z_{F})}{\sqrt{1 + D^{2} - \delta n \cdot \frac{z^{2}}{a^{2}} \cdot e^{\frac{-x}{a}}}} \exp\left\{-\frac{(x - \delta n \cdot \frac{z^{2}}{a} \cdot e^{\frac{-x}{a}})^{2}}{w^{2}(1 + D^{2})} - \frac{y^{2}}{w^{2}(1 + D^{2})}\right\}.$$
 (39)

Как следует из структуры (39) дифракционная расходимость пучка из-за ограниченности его радиуса компенсируется фокусировкой пучка из-за рефракции (слагаемые под знаком корня имеют разные знаки), что соответствует возрастанию его амплитуды. Первое слагаемое в показателе экспоненты определяет смещение центра пучка, т.е. описывает рефракцию в волновой трактовке с одновременным учетом искажения формы огибающей пучка. Равенство нулю знаменателя в (39) соответствует образованию каустики, которая при z > 1 см видна на рис. 4, представляющем рефракционную картину лучей в пучке. Расчеты выполнены при $\delta n = 0,01$, a = 1 мм.

Рис. 4. Рефракция лучей в пучке для плоскослоистой модели при $\delta n = 0,01, a = 1$ мм

Рис. 5. иллюстрирует фокусировку и деформацию астигматического пучка в зависимости от дистанции, пройденной в сферическом слое на расстоянии 0,3 мм от нагретого шара радиусом 40 мм.

4. МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ СТРУКТУРИРОВАННОГО ПУЧКА В СВОБОДНОМ ПРОСТРАНСТВЕ НА ОСНОВЕ ФОРМУЛЫ ГРИНА

Моделирование распространения структурированного пучка в свободном пространстве может проводиться на основе спектрального метода или с использованием формулы Грина.

Переход от спектрального описания:

F(
$$k_x, k_y$$
) = F₀(k_x, k_y)H(k_x, k_y), (40)
где $H(k_x, k_y) = \exp\left(iz\sqrt{k^2 - k_x^2 - k_y^2}\right)$

к полевому (на основе формулы Грина) можно осуществить с помощью операции свертки:

$$U(x, y) = \iint U_0(\xi, \eta) h(x - \xi, y - \eta) d\xi d\eta,$$
(41)

где пределы интегрирования определяются структурой пучка, а h(x,y) связано с $H(k_x,k_y)$ обратным преобразованием Фурье:

$$h(x, y) = \frac{1}{4\pi^2} \iint H(k_x, k_y) \exp[i(k_x x + k_y y)] dk_x dk_y =$$

= $\frac{1}{4\pi^2} \iint \exp[i\sqrt{k_0^2 - k_x^2 - k_y^2} z] \exp[i(k_x x + k_y y)] = -\frac{1}{2\pi} \frac{d}{dz} \left(\frac{e^{ik_0 R}}{R}\right),$ (42)

где $R = \sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2}.$

Рис. 5. Расчетные рефрактограммы внутри сферического слоя при изменении дистанции z: 1-z = 2 мм, 2-z = 4 мм, 3-z = 6 мм, 4-z = 8 мм, 5-z = 10 мм, 6-z = 12 мм

Соотношение (11) следует из формулы Вейля – разложения сферической волны по плоским:

$$\frac{e^{ik_0R}}{R} = \frac{i}{2\pi} \iint \frac{\exp(i\sqrt{k_0^2 - k_x^2 - k_y^2}z)}{\sqrt{k_0^2 - k_x^2 - k_y^2}} \exp[i(k_x x + k_y y)] dk_x dk_y.$$
(43)

Окончательно получаем:

$$U(x, y, z) = -\frac{1}{2\pi} \iint U_0(\xi, \eta) \frac{d}{dz} \frac{e^{ik_0 R}}{R} d\xi d\eta.$$
(44)

$$\frac{d}{dz}\frac{e^{ik_0R}}{R} = \frac{e^{ik_0R}}{R}\left(ik_0 - \frac{1}{R}\right)\frac{dR}{dz}.$$
(45)

В условиях оптического

эксперимента практически всегда *R*>> λ (волновая зона), тогда вторым слагаемым в круглых скобках можно пренебречь, и мы получим:

$$h(x,y) = \frac{1}{i\lambda} \frac{e^{ikR}}{R} \frac{dR}{dz} = \frac{1}{i\lambda} \frac{e^{ikR}}{R} \frac{z}{R},$$
(46)

Итак,

$$U(x, y, z) = \frac{1}{i\lambda} \iint U_0(\xi, \eta) \frac{z e^{ik_0 R}}{R^2} d\xi d\eta.$$
(47)

Значение $U_0(\xi, \eta)$ на выходе из неоднородности найдем в приближении фазового экрана, при условии, что известна пространственная зависимость показателя преломления n(x,y) и длина неоднородности равна *l*. Пусть поле пучка на входе в неоднородность равно A(x,y), тогда

$$U_0(x, y) = A(x, y)e^{ikln(x, y)}.$$
(48)

Окончательно, поле в плоскости наблюдения z_e:

$$U(x, y, z_e) = \frac{1}{i\lambda} \iint A(\xi, \eta) e^{ik_0 ln(\xi, \eta)} \frac{z e^{ik_0 R}}{R^2} d\xi d\eta.$$
(49)

В отличие от модели, рассмотренной в разделе 3, где учтены объемные эффекты в слое, в приближении фазового экрана предполагается, что амплитудное распределение в сечении пучка на выходе из неоднородности A(x,y) (рисунок 6) остается неизменным, а меняется только фазовое распределение $\varphi = k_0 ln(x,y)$.

Рис. 6. Примеры расчетных рефрактограмм на выходе из неоднородности: наклонная лазерная плоскость и цилиндрический пучок

На рис. 7 показаны расчетные рефрактограммы горизонтальной лазерной плоскости на выходе из сферической неоднородности (в приближении фазового экрана) и в плоскости наблюдения (расчет по формуле (49))

Рис. 7. Расчетные рефрактограммы горизонтальной лазерной плоскости на выходе из сферической неоднородности и в плоскости наблюдения

ЗАКЛЮЧЕНИЕ

В данной работе было проведено исследование распространения лазерного пучка в слоистых неоднородностях на основе волнового уравнения с учетом рефракции в первом приближении метода возмущений по параметру δn . Расчет на основе квазиоптического приближения распространения ЛП для разных расстояний от нагретого тела позволяет одновременно учитывать дифракционные и рефракционные эффекты при обработке изображений, что дает возможность снизить погрешность измерений смещения ЛП. Кроме того, применение волнового описания позволяет определить границы

применимости геометрической оптики, в частности, как следует из приведенных выше расчетов, преобладающими являются рефракционные эффекты, что позволяет использовать классические лучевые методы.

СПИСОК ЛИТЕРАТУРЫ

1. Евтихиева О.А. Расковская И.Л. Ринкевичюс Б.С. Лазерная рефрактография. Физматлит, 2008, 176 с.

2. Расковская И.Л., Ринкевичюс Б.С., Толкачев А.В. Лазерная рефрактография оптически неоднородных сред. // Квантовая электроника, 2007. № 12, С. 1176 -1180

3. **Методы** компьютерной оптики. /Под ред. В.А.Сойфера. – М.: Физматлит, 2003. 687 с.

4. Пудовиков Д.Е., Расковская И.Л., Ринкевичюс Б.С., Толкачев А.В. Диагностика конвективных процессов в пограничном слое жидкости методом лазерной рефрактографии. // Инженерно-физический журнал, 2010, том 83, №6.

5. Расковская И.Л., Сергеев Д.А., Ширинская Е.С. Диагностика характеристик солестратифицированной жидкости методом лазерной рефрактографии. // Измерительная техника, 2010, №11

6. **3D-laser** refractography new chapter of information optics / B.S Rinkevichyus, O.A. Evtikhieva, M.V.Yesin et al. / Journal of Physics: Conference Series, Volume 206, 2010 8th International Workshop on Information Optics (WIO' 09) 20-24 July 2009, Paris, France

7. **Rinkevichyus B.S., Raskovskaya I.L., Tolkachev A.V.** 3D-laser refractography. In Book of abstracts. "18th International Conference on Advanced Laser Technologies". 11-16 September 2010. `Radboud University Nijmegen. The Nederlands, p.135

8. Расковская И.Л. Структурированные пучки в задачах лазерной рефрактографии // Радиотехника и электроника, 2009, том 54, №12, с.1524-1531

9. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. – М.: Наука, 1979, 383 с.

10. Расковская И.Л. Распространение лазерного пучка в среде с акустической волной // Радиотехника и электроника. –2004, №11.–С.1382-1389.

11. Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика неоднородных сред. – М.: Наука, 1980.